\(\hept{\begin{cases}a^2+b^2+c^2=1\\a^3+b^3+c^3=1\end{cases}}\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2020

\(a^2+b^2+c^2=1\Rightarrow-1\le a;b;c\le1\text{ ta có:}\)

\(a^2-a^3+b^2-b^3+c^2-c^3=a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\Rightarrow\text{ 1 số bằng 1; 2 số bằng 1}\)

do đó:a+b2+c3=1

21 tháng 6 2020

\(\hept{\begin{cases}a^2+b^2+c^2=1\left(1\right)\\a^3+b^3+c^3=1\left(2\right)\end{cases}}\)

Ta có: ( 1) => \(a^2\le1;b^2\le1;c^2\le1\) => \(-1\le a\le1;-1\le b\le1;-1\le c\le1\)

=> \(\left(a-1\right)\le0;\left(b-1\right)\le0;\left(c-1\right)\le0\)

<=> \(a^2\left(a-1\right)\le0;b^2\left(b-1\right)\le0;c^2\left(c-1\right)\le0\)

Lấy (2) - (1) ta có: \(a^3-a^2+b^3-b^2+c^3-c^2=0\)

<=> \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)(1)

TH1) Tồn tại ít nhất 1 số trong 3 số: \(a^2\left(a-1\right);b^2\left(b-1\right);c^2\left(c-1\right)< 0\)

=> vô lí 

Th2) Cả 3 số bằng 0 

(1) <=> \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)

Mặt khác \(a^2+b^2+c^2=1\)

Do đó chỉ có các nghiệm: ( 1; 0; 0) hoặc (0; 0; 1) hoặc ( 0; 1; 0 ) thỏa mãn

Vậy tổng a + b^2 + b^3 = 1

20 tháng 8 2017

1.

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)

Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)

Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng

20 tháng 8 2017

Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)

Dễ thấy dấu "=" xảy ra khi  \(a=\frac{1}{3}\)

khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)

\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)

tương tự =>đpcm

11 tháng 8 2016

Ta có: \(c=-a-b\), tính được các đại lượng: 

\(a^3+b^3+c^3=a^3+b^3-\left(a+b\right)^3=-3ab\left(a+b\right)\)

\(a^5+b^5+c^5=a^5+b^5-\left(a+b\right)^5=-5ab\left(a^3+b^3\right)-10a^2b^2\left(a+b\right)\)

\(=-5ab\left(a+b\right)\left(a^2+b^2-ab\right)-10a^2b^2\left(a+b\right)\)

2 biểu thức trên bằng nhau nên:

\(5ab\left(a+b\right)\left[a^2+b^2-ab+2ab\right]=3ab\left(a+b\right)\)

\(\Leftrightarrow\orbr{\begin{cases}a+b=0\text{ (1)}\\5\left(a^2+b^2+ab\right)=3ab\text{ (2)}\end{cases}}\text{ }\left(do\text{ }ab\ne0\right)\)

\(\left(2\right)\Leftrightarrow5a^2+5b^2-2ab=0\Leftrightarrow4a^2+4b^2+\left(a-b\right)^2=0\)

\(\Leftrightarrow a=b=0\) --> loại

Vậy \(a+b=0\)

\(\Rightarrow c=-a-b=0\)--> loại

Vậy ko tồn tại a, b, c thỏa giả thiết bài toán