Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2000a}{ab+2000a+2000}+\frac{b}{bc+b+2000}+\frac{c}{ac+c+1}\)
\(=\frac{a\cdot abc}{ab+abc\cdot a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{a^2bc}{ab\left(ac+c+1\right)}+\frac{b}{b\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(=\frac{ac+c+1}{ac+c+1}=1\)
Đặt bt là P ta có
P = 2000a/(ab + 2000a + 2000) + b/(bc + b + 2000) + c/(ac + c + 1)
= 2000ac/(abc + 2000ac + 2000c) + b/(bc + b + abc) + c/(ac + c + 1)
= 2000ac/(2000 + 2000ac + 2000c) + 1/(1 + c + ac) + c/(ac + c + 1)
= ac/(1 + ac + c) + 1/(ac + c + 1) + c/(ac + c + 1)
= (ac + c + 1)/(ac + c + 1) = 1
1/a+1/b+1/c=1/200
=>\(\frac{a+b}{ab}=\frac{1}{2000}-\frac{1}{c}\)\(\frac{\Leftrightarrow a+b}{ab}=\frac{c-2000}{2000c}\Rightarrow\left(c-2000\right)ab=\left(a+b\right)2000c\)
a + b +c = 2000 => a + b = 2000 - c
________________________________________**** cho mình nhé bn Lee Min Ho
Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo cách làm tương tự !
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)
\(=abc-\left(ab+bc+ca\right)+a+b+c-1\)
\(=abc-abc+1-1=0\) (đpcm)
Ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\frac{ab+ca+c\left(b+c\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\)
<=> a+b=0 hoặc b+c=0 hoặc c+a=0
TH1: Nếu a+b=0
Ta có: \(a^{25}+b^{25}=\left(a+b\right)\left(...\right)\)=> A=0
TH2: Nếu b+c=0
Ta có: \(b^3+c^3=\left(b+c\right)\left(...\right)=0\)=> A=0
TH3: Nếu c+a=0 => c=-a => \(c^{2000}=a^{2000}\Rightarrow c^{2000}-a^{2000}=0\)=> A=0
Vậy trong tất cả các TH thì A=0
Cho a,b,c thõa mãn : a^2 + b^2 +c^2 - ab -bc- ca = 0. Tính: P = (a-b)^2020 + (b-c)^2021 + (c-a)^2022
\(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\) (1)
Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
Nên PT (1) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)
=> a = b = c
\(P=\left(a-b\right)^{2020}+\left(b-c\right)^{2021}+\left(c-a\right)^{2022}\)
\(=\left(a-a\right)^{2020}+\left(b-b\right)^{2021}+\left(c-c\right)^{2022}\)
= 0
Sửa đề: \(x+\dfrac{1}{x}=a\)
\(A=x^3+\dfrac{1}{x^3}=\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)=a^3-3a\\ B=x^6+\dfrac{1}{x^6}=\left(x^3+\dfrac{1}{x^3}\right)^2-2=\left(a^3-3a\right)^2-2=a^6-6a^4+9a^2-2\\ C=x^7+\dfrac{1}{x^7}=\left(x^3+\dfrac{1}{x^3}\right)\left(x^4+\dfrac{1}{x^4}\right)-\left(x+\dfrac{1}{x}\right)\)
Mà \(x^4+\dfrac{1}{x^4}=\left(x^2+\dfrac{1}{x^2}\right)^2-2=\left[\left(x+\dfrac{1}{x}\right)^2-2\right]^2-2=\left(a^2-2\right)^2-2=a^4-4a^2+2\)
\(\Leftrightarrow C=\left(a^3-3a\right)\left(a^4-4a^2+2\right)-a=...\)
P=\(\dfrac{2000a}{ab+2000a+2000}\)
P=\(\dfrac{a^2bc}{ab+a^2bc+abc}\)
P=\(\dfrac{a^2bc}{ab\left(1+ac+c\right)}\)
P=\(\dfrac{ac}{1+ac+c}\)