Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$2(ab+bc+ac)=(a+b+c)^2-(a^2+b^2+c^2)=6^2-12=24=2(a^2+b^2+c^2)$
$\Rightarrow 2(a^2+b^2+c^2)-2(ab+bc+ac)=0$
$\Leftrightarrow (a^2+b^2-2ab)+(b^2+c^2-2bc)+(c^2+a^2-2ac)=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
$\Rightarrow a-b=b-c=c-a=0$
$\Rightarrow a=b=c$. Mà $a+b+c=6$ nên $a=b=c=2$
Khi đó:
$A=(2-3)^{2020}+(2-3)^{2020}+(2-3)^{2020}=1+1+1=3$
a) Áp dụng Cauchy Schwars ta có:
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi: x=y=1
\(\left(a+b+c\right)^2=3a^2+3b^2+3c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
\(\Rightarrow P=a^2+\left(a+2\right)\left(a+a\right)+2020\)
\(\Rightarrow P=3a^2+4a+2020=3\left(a+\frac{2}{3}\right)^2+\frac{6056}{3}\ge\frac{6056}{3}\)
\(P_{min}=\frac{6056}{3}\) khi \(a=-\frac{2}{3}\)
\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)_{ }\)
\(a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)
Do đó \(P=a^2+\left(a+2\right)\left(2a\right)+2020\)
\(P=a^2+2a^2+4a+2020\)
\(P=3a^2+4a+2020\)
\(3P=9a^2+12a+6060\)
\(3P=\left(3a\right)^2+2.\left(3a\right).2+4+6060-4\)
\(3P=\left(3a+2\right)^2+6056\ge6056\Leftrightarrow3P\ge6056\Leftrightarrow P\ge\frac{6056}{3}\) Dấu "=" xảy ra khi a = b = c = \(-\frac{3}{2}\)
Vậy P đạt giá trị nhỏ nhất là 6056/3 khi a = b = c = -3/2
\(2a^{2020}+2b^{2020}+2c^{2020}-2\left(ab\right)^{1010}-2\left(bc\right)^{1010}-2\left(ca\right)^{1010}=0\)
\(\Leftrightarrow\left(a^{1010}-b^{1010}\right)^2+\left(b^{1010}-c^{1010}\right)^2+\left(c^{1010}-a^{1010}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^{1010}-b^{1010}=0\\b^{1010}-c^{1010}=0\\c^{1010}-a^{1010}=0\end{matrix}\right.\)
\(\Rightarrow\left|a\right|=\left|b\right|=\left|c\right|\)
Nếu đề không cho a;b;c dương thì không tính được cụ thể giá trị A
Nếu a;b;c dương thì \(a=b=c\Rightarrow A=0\)
cho a^3 +b^3+c^3=3abc và a+b+c khác 0 tính giá trị của biểu thức M=a^2020+b^2020+c^2020/(a+b+c)^2020
Ta có : a3 + b3 + c3 = 3abc
=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0
=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0
=> [(a + b)3 + c3] - [(3ab(a + b) + 3abc] = 0
=> (a + b + c)(a2 + b2 + 2ab - ac - bc + c2) - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
=> a2 + b2 + c2 - ab- ac - bc = 0
=> 2(a2 + b2 + c2 - ab- ac - bc) = 0
=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0
=> (a - b)2 + (b - c)2 + (a - c)2 = 0
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow a=b=c\)
Khi đó M = \(\frac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}=\frac{3.c^{2020}}{\left(3c\right)^{2020}}+\frac{3c^{2020}}{3^{2020}.c^{2020}}=\frac{1}{3^{2019}}\)
cho a^3 +b^3+c^3=3abc và a+b+c khác 0 tính giá trị của biểu thức M=a^2020+b^2020+c^2020/(a+b+c)^2020
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
mà \(a+b+c\ne0\)
nên \(a^2+b^2+c^2-ab-ac-bc=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)
Ta có: \(M=\dfrac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}\)
\(=\dfrac{a^{2020}+a^{2020}+a^{2020}}{\left(a+a+a\right)^{2020}}=\dfrac{3\cdot a^{2020}}{9\cdot a^{2020}}=\dfrac{1}{3}\)
Đoạn cuối em bị nhầm rồi kìa. \(\frac{a^{2020}+b^{2020}+c^{2020}}{(a+b+c)^{2020}}=\frac{3a^{2020}}{(3a)^{2020}}=\frac{3}{3^{2020}}=\frac{1}{3^{2019}}\)
Ta có : \(a+b+c=3\Rightarrow\left(a+b+c\right)^2=9\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)=9-2\times6=3\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\)
Mà \(a+b+c=3\Rightarrow a=b=c=1\)
\(\Rightarrow A=\left(1-1\right)^{2019}+\left(1^2-1\right)^{2020}+\left(1^3-1\right)^{2021}\)
\(=0^{2019}+0^{2020}+0^{2021}=0\)
\(\left(a+b+c\right)^2=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
\(\Rightarrow P=\frac{a^{2020}+1}{a^{2020}+a^{2020}+a^{2020}+3}=\frac{a^{2020}+1}{3\left(a^{2020}+1\right)}=\frac{1}{3}\)