K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 5 2022

Lời giải:

a. Tứ giác $BFEC$ có $\widehat{BFC}=\widehat{BEC}=90^0$ và cùng nhìn cạnh $BC$ nên là tgnt

$\Rightarrow \widehat{EBF}=\widehat{ECF}$ (cùng nhìn cạnh $EF$)

$\Leftrightarrow \widehat{ABM}=\widehat{ACN}$

$\Rightarrow \text{sđc(AM)}=\text{sđc(AN)}$

$\Rightarrow AM=AN$

b. Do $AM=AN$ (cmt) nên $\widehat{ABN}=\widehat{ABM}$ (góc nt chắn 2 cung bằng nhau)

hay $\widehat{NBF}=\widehat{HBF}$

hay $BF$ là phân giác $\widehat{NBH}$

Tam giác $BNH$ có $BF$ vừa là đường cao và phân giác nên $BHN$ là tam giác cân

$\Rightarrow BF$ cũng là đường trung tuyến của tam giác 

$\Rightarrow F$ là trung điểm NH$

Kẻ tiếp tuyến $Ax$ như hình. Khi đó $Ax\perp AO(1)$

Ta có:

$\widehat{xAB}=\widehat{ACB}$ (theo tc tiếp tuyến) 

$\widehat{ACB}=\widehat{AFE}$ (do $BFEC$ là tgnt) 

$\Rightarrow \widehat{xAB}=\widehat{AFE}$

Hai góc này ở vị trí so le trong nên $Ax\parallel EF(2)$

Từ $(1); (2)\Rightarrow AO\perp EF$ (đpcm)

 

AH
Akai Haruma
Giáo viên
26 tháng 5 2022

Hình vẽ:

1: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

Xét tứ giác AEDB có

\(\widehat{AEB}=\widehat{ADB}=90^0\)

Do đó: AEDB là tứ giác nội tiếp

2: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{EAB}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)

a) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Tâm I của đường tròn ngoại tiếp tứ giác BFEC là trung điểm của BC

b) Xét ΔSFB và ΔSCE có 

\(\widehat{FSB}\) chung

\(\widehat{SFB}=\widehat{SCE}\left(=180^0-\widehat{BFE}\right)\)

Do đó: ΔSFB∼ΔSCE(g-g)

Suy ra: \(\dfrac{SF}{SC}=\dfrac{SB}{SE}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(SE\cdot SF=SB\cdot SC\)(đpcm)

a: Xét (O) có

góc ACN là góc nội tiếp chắn cung AN

góc ABM là góc nội tiếp chắn cung AM

góc ABM=góc ACN

Do đó: AM=AN

b: Kẻ tiếp tuyến phụ Ax

=>góc xAC=góc ABC

mà góc ABC=góc AEF

nên góc AEF=góc xAC

=>Ax//FE

=>OA vuông góc với FE

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC

a: Xét tứ giác BDEA có

góc BDA=góc BEA=90 độ

=>BDEA là tứ giác nội tiếp

b: Kẻ tiếp tuyến Ax

=>góc xAC=góc ABC

mà góc ABC=góc AEF(=180 độ-góc FEC)

nên góc xAC=góc AEF

=>Ax//FE

=>FE vuông góc OA

Xét (O) có

ΔACA' nội tiếp

AA' là đường kính

=>ΔACA' vuông tại C

Xét tứ giác A'CEM có

góc EMA'+góc ECA'=180 độ

=>A'CEM là tứ giác nội tiếp