K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

Ta có: \(1=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

Vì a,b,c là số nguyên dương nên: 

Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c}\)

          \(\frac{b}{b+c}>\frac{b}{a+b+c}\)

           \(\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)             

                                                                                                                       đpcm

28 tháng 6 2018

Cảm ơn bạn rất nhiều!

18 tháng 3 2016

a/b= (1+1/6) + (1/2+1/5) + (1/3+1/4)

a/b= 7/6 + 7/10 + 7/12

a/b= 7(1/6+1/10+1/12)

Vì 6x10x12 khong la boi so cua 7 => a/b chia het cho 7 <=> a chia het cho 7 (dpcm)

18 tháng 3 2016

Bạn ơi cho mình hỏi dpcm là gì vậy?

29 tháng 6 2018

Từ 2 giả thiết: \(a+b+c=2018;\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{6}{2018}\)

\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2018.6}{2018}=6\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=6\)

\(\Leftrightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=6\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=3\)

Vậy giá trị của biểu thức đó là 3.

a: a=63; b=99

14 tháng 7 2018

Nối 1 điểm với 6 điểm còn lại, ta được 6 đường thẳng

Có 7 điểm như vậy nên có số đường thẳng là:

7 . 6 = 42 ( đường thẳng )

Mà mỗi đường thẳng lặp lại 2 lần

Ta vẽ được số đưởng thẳng trong 7 điểm đã cho là:

42 : 2 = 21 ( đường thẳng )

Đ/S: 21 đường thẳng

14 tháng 7 2018

Bài này bạn ko cần vẽ hình đâu.

Vì trong 7 điểm ko có 3 điểm nào thẳng hàng nên từ 1 điểm nối với 6 điểm còn lại tạo thành 1 đường thẳng

Vậy vẽ được số đường thẳng là :  7x6 =42(đường thẳng)

Mà mỗi đường thẳng đã được tính 2 lần nên ta vẽ được số đường thẳng từ 7 điểm đã cho là:

                                      42:2=21 (đường thẳng)

22 tháng 2 2018

\(A=1+\frac{2^2}{3^2}+\frac{2^2}{5^2}+\frac{2^2}{7^2}+...+\frac{2^2}{2009^2}\)

\(A=1+2^2\left(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+..+\frac{1}{2009^2}\right)\)

Ta có: \(\frac{1}{3^2}< \frac{1}{1.3};\frac{1}{5^2}< \frac{1}{3.5};\frac{1}{7^2}< \frac{1}{5.7};...;\frac{1}{2009^2}< \frac{1}{2007.2009}\)

\(\Rightarrow A< 1+4\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{2007.2009}\right)\)

\(=1+4\cdot\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2009}\right)\)

\(=1+2\left(1-\frac{1}{2009}\right)=3-\frac{2}{2009}< 3\)

\(\Rightarrow A< 3\)

25 tháng 6 2023

A = 32010 + 52010 cmr A ⋮ 13 

A = 32010 + 52010 = (33)670 + (54)502.52 = 27670 + 625502.25

27 \(\equiv\) 1 (mod 13) ⇒ 27670 \(\equiv\) 1670 (mod 13) ⇒ 27670 \(\equiv\)1 (mod 13)

625 \(\equiv\) 1(mod 13) ⇒625502 \(\equiv\) 1502(mod 13) ⇒ 625502\(\equiv\) 1(mod 13)

25        \(\equiv\) -1 (mod 13)

625502 \(\equiv\) 1 (mod 13)

Nhân vế với vế ta được: 625502.25 \(\equiv\) -1 (mod 13)

              Mặt khác ta có: 27670         \(\equiv\) 1 (mod 13)

Cộng vế với vế ta được:27670 + 625502.25 \(\equiv\) 1 -1 (mod 13 )

                                      27670 + 625502.25 \(\equiv\) 0 (mod 13)

                         ⇒         27670 + 625502.25  ⋮ 13

 ⇒ A = 32010 + 52010 = 27670 + 625502.25 ⋮ 13 (đpcm)

 

25 tháng 6 2018

\(x = {{18.123+9.4567.2+3.5310.6} \over 1+4+7+10+...+55+58-409}\)

\(A = {9.246+9.9134+9.10620{} \over [(58-1):3+1].(58+1):2-409}\)

\(A = {9.(246+9134+10620){} \over 590-490}\)

\(x = {20000{} \over 100}=200\)

x mk ghi nhầm nha A mới đúng nha

chúc bạn học tốt nha

25 tháng 6 2018

mk dùng toán bằng TeX nên nó bị lỗi bạn thông cảm nha