Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔABM=ΔCDM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
thế này đúng ko
a) Chứng minh : 𝛥ABM = 𝛥CDM
Xét 𝛥ABM và 𝛥CDM :
MA = MC (gt)
MB = MD (gt)
(đối đinh)
=> 𝛥ABM = 𝛥CDM (c – g – c)
b) Chứng minh : AB // CD
Ta có :
(góc tương ứng của 𝛥ABM = 𝛥CDM)
Mà : ở vị trí so le trong
Nên : AB // CD
c) Chứng minh BK = DH
Xét 𝛥ABH và 𝛥CDK, ta có :
(cmt)
AB = CD (𝛥ABM = 𝛥CDM)
=> 𝛥ABH = 𝛥CDK (cạnh huyền – góc nhọn)
=> BH = CK (cạnh tương ứng)
hình bạn nhé :
Xét ΔABEΔABE và ΔDCEΔDCE có :
EB=ECEB=EC (EE là trung điểm BCBC)
EA=EDEA=ED (EE là trung điểm ADAD)
∠AEB=∠DEC∠AEB=∠DEC (đối đỉnh)
⇒ΔABE=ΔDCE(c−g−c)⇒ΔABE=ΔDCE(c−g−c)
b) Chứng minh: AC//BDAC//BD.
Xét ΔACEΔACE và ΔDBEΔDBE có :
EB=ECEB=EC (EE là trung điểm BCBC)
EA=EDEA=ED (EE là trung điểm ADAD)
∠AEC=∠DEB∠AEC=∠DEB (đối đỉnh)
⇒ΔACE=ΔDBE(c−g−c)⇒ΔACE=ΔDBE(c−g−c)
⇒∠ACE=DBE⇒∠ACE=DBE (góc tương ứng)
Mà hai góc ở vị trí so le trong nên AC//BDAC//BD (đpcm)
c) Vẽ AHAH vuông góc với ECEC (HH thuộc BCBC). Trên tia AHAH lấy điểm KK sao cho HH là trung điểm của AKAK. Chứng minh rằng BD=AC=CKBD=AC=CK.
Ta có : ΔACE=ΔDBE(cmt)ΔACE=ΔDBE(cmt)⇒BD=AC⇒BD=AC (cạnh tương ứng) (1)
Xét ΔCAHΔCAH và ΔCKHΔCKH có :
CHCH chung
∠CHA=∠CHK=900∠CHA=∠CHK=900
HA=HK(gt)HA=HK(gt)
⇒ΔCAH=ΔCKH(c−g−c)⇒ΔCAH=ΔCKH(c−g−c)
⇒CA=CK⇒CA=CK (2)
Từ (1) và (2) suy ra AC=BD=CKAC=BD=CK (đpcm)
d) Chứng minh DKDK vuông góc với AHAH.
Nối EE với KK.
Xét ΔEAHΔEAH và ΔEKHΔEKH có :
EHEH chung
∠EHA=∠EHK=900∠EHA=∠EHK=900
HA=HK(gt)HA=HK(gt)
⇒ΔEAH=ΔEKH(c−g−c)⇒ΔEAH=ΔEKH(c−g−c) ⇒∠EAH=∠EKH⇒∠EAH=∠EKH (góc t/ư) (3)
EK=EAEK=EA (cạnh t/ư), mà EA=ED(gt)EA=ED(gt) ⇒EK=ED⇒EK=ED ⇒ΔEKD⇒ΔEKD cân tại EE
⇒∠EKD=∠EDK⇒∠EKD=∠EDK (t/c) (4)
Từ (3) và (4) suy ra ∠EAK+∠EDK=∠EKA+∠EKD=∠AKD∠EAK+∠EDK=∠EKA+∠EKD=∠AKD
Tam giác AKDAKD có : ∠EAK+∠EDK+∠AKD=1800∠EAK+∠EDK+∠AKD=1800
⇒∠AKD+∠AKD=1800⇒2∠AKD=1800⇒∠AKD=1800:2=900⇒∠AKD+∠AKD=1800⇒2∠AKD=1800⇒∠AKD=1800:2=900
Vậy AK⊥KDAK⊥KD (đpcm).
chúc bạn học tốt
Lời giải:
a,Vì M là trung điểm AC nên MA=MC
MB=MD (gt)=>M là trung điểm của BD
Góc AMB=góc DMC (đối đỉnh)
=> tam giác ABM=tam giác CDM(c.g.c) (1)
b,vì tam giác ABC nhọn(gt)
=>góc B ,góc C nhọn
M là trung điểm của AC và BD
=>M là giao điểm 2 đường thẳng AC và BD
Từ. (1) => góc ABM=góc CDM (so le)
Góc MCD= góc BAM (so le)
Cạnh AB=CD
=>Tứ giác ABCD là hình bình hành
=>AB//CD
c,vì H và K là 2 điểm thuộc BD
mà BH =DK (gt)
Từ A kẻ AH_|_ BD; từ C kẻ CK_|_BD
=> AH=CK( vì tam giác ABD=tam giác BCD co BD là cạnh chung)
=>AH//CK
=>góc AKH=góc CHK(2 góc ở vị trí so le)
=> tam giác AHK=tam giác CKH(c.g.c)
=>AK=CH
Bài 2
Bài làm
a) Xét tam giác ABM và tam giác DCM có:
BM = MC ( Do M là trung điểm BC )
^AMB = ^DMC ( hai góc đối )
MD = MA ( gt )
=> Tam giác ABM = tam giác DCM ( c.g.c )
b) Xét tam giác BHA và tam giác BHE có:
HE = HA ( Do H là trung điểm AE )
^BHA = ^BHE ( = 90o )
BH chung
=> Tam giác BHA = tam giác BHE ( c.g.c )
=> AB = BE
Mà tam giác ABM = tam giác DCM ( cmt )
=> AB = CD
=> BE = CD ( đpcm )
Bài 3
Bài làm
a) Xét tam giác ABD và tam giác ACD có:
AB = AB ( gt )
BD = DC ( Do M là trung điểm BC )
AD chung
=> Tam giác ABD = tam giác ACD ( c.c.c )
b) Xét tam giác BEC và tam giác MEA có:
AE = EC ( Do E kà trung điểm AC )
^BEC = ^MEA ( hai góc đối )
BE = EM ( gt )
=> Tam giác BEC = tam giác MEA ( c.g.c )
=> BC = AM
Mà BD = 1/2 . BC ( Do D là trung điểm BC )
hay BD = 1/2 . AM
Hay AM = 2.BD ( đpcm )
c) Vì tam giác ABD = tam giác ACD ( cmt )
=> ^ADB = ^ADC ( hai góc tương ứng )
Mà ^ADB + ^ADC = 180o ( hai góc kề bù )
=> ^ADB = ^ADC = 180o/2 = 90o
=> AD vuông góc với BC (1)
Vì tam giác BEC = tam giác MEA ( cmt )
=> ^EBC = ^EMA ( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong
=> AM // BC (2)
Từ (1) và (2) => AM vuông góc với AD
=> ^MAD = 90o
# Học tốt #
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
Đề cho tam giác chứ ko phải tứ giác bạn ơi