Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a(b-c)^2+b(a-c)^2\vdots a+b$
$\Leftrightarrow a(b^2-2bc+c^2)+b(a^2-2ac+c^2)\vdots a+b$
$\Leftrightarrow ab(a+b)-4abc+c^2(a+b)\vdots a+b$
$\Leftrightarrow 4abc\vdots a+b$
Giả sử $a+b$ là số nguyên tố lẻ. Đặt $a+b=p$
Khi đó;
$4abc\vdots p\Leftrightarrow abc\vdots p$
$\Rightarrow a\vdots p$ hoặc $b\vdots p$ hoặc $c\vdots p$
Nếu $a\vdots p\Leftrightarrow a\vdots a+b$ (vô lý với mọi $a>0$)
Nếu $b\vdots p$ thì tương tự (vô lý)
Nếu $c\vdots p\Leftrightarrow c\vdots a+b$. Mà $c>0$ nên $c\geq a+b$
$\Leftrightarrow a+b-c\leq 0$ (vi phạm bđt tam giác)
Do đó điều giả sử sai. Tức $a+b$ là hợp số.
Ta có :\(\left(a-b\right)^2\ge0\forall a,b\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
Mà \(a^2+b^2=c^2\left(Py-ta-go\right)\)
\(\Rightarrow c^2-2ab\ge0\)
\(\Leftrightarrow c^2\ge2ab\)
\(\Leftrightarrow2c^2\ge a^2+b^2+2ab\)( Do c2=a2+b2)
\(\Leftrightarrow2c^2\ge\left(a+b\right)^2\)
\(\Leftrightarrow c\sqrt{2}\ge a+b\)( ĐPCM )
Ta có a+b \(\le\)c√2
<=> (a+b) 2\(\le\)(c√2)2
<=> a2+2ab+b2\(\le\)2c2
<=> a2+2ab+b2 \(\le\)2(a2+b2) = 2a2+2b2
<=> 0 \(\le\)a2-2ab+b2 = (a-b)2 ( luôn đúng)
=> a+b \(\le\)c√2
Đặt \(\frac{\left(a+b-c\right)}{2}=x;\frac{\left(c+a-b\right)}{2}=y;\frac{\left(b+c-a\right)}{2}=z\) thì x, y, z > 0(do a, b, c là độ dài 3 cạnh tam giác)
Và \(a=x+y;b=x+z;c=y+z\)
Thay vào, ta cần chứng minh: \(2\left[xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+6xyz\right]>0\) (luôn đúng do x, y, z > 0)
Done!
Nguyet9ak47 mk ko bt có đúng ko nhưng bn tham khảo nhé:
ta co a+b>c suy ra 2c<a+b+c=2 =>c<1,a<1,b<1
(1-a)(1-b)(1-c)>0
=>ab+bc+ac>1+abc
lai co
4=2(ab+bc+ac)+a2+b2+c2
tu do suy ra
4>a2+b2+c2+2(1+abc)=>a2+b2+c2+2abc<2=>... a,b,c>0)
P/s: Nguyet9ak47, Chứng minh rằng sao bn ko viết là CMR
Câu trả lời hay nhất: Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2
--> a + b + c = 2
Trong 1 tam giác thì ta có:
a < b + c
--> a + a < a + b + c
--> 2a < 2
--> a < 1
Tương tự ta có : b < 1, c < 1
Suy ra: (1 - a)(1 - b)(1 - c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
⇔ 2abc < -2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
⇔ a² + b² + c² + 2abc < 2
--> đpcm
p/s: kham khảo