K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

$a(b-c)^2+b(a-c)^2\vdots a+b$

$\Leftrightarrow a(b^2-2bc+c^2)+b(a^2-2ac+c^2)\vdots a+b$

$\Leftrightarrow ab(a+b)-4abc+c^2(a+b)\vdots a+b$

$\Leftrightarrow 4abc\vdots a+b$

Giả sử $a+b$ là số nguyên tố lẻ. Đặt $a+b=p$

Khi đó;

$4abc\vdots p\Leftrightarrow abc\vdots p$

$\Rightarrow a\vdots p$ hoặc $b\vdots p$ hoặc $c\vdots p$

Nếu $a\vdots p\Leftrightarrow a\vdots a+b$ (vô lý với mọi $a>0$)

Nếu $b\vdots p$ thì tương tự (vô lý)

Nếu $c\vdots p\Leftrightarrow c\vdots a+b$. Mà $c>0$ nên $c\geq a+b$

$\Leftrightarrow a+b-c\leq 0$ (vi phạm bđt tam giác)

Do đó điều giả sử sai. Tức $a+b$ là hợp số.

3 tháng 9 2018

Ta có :\(\left(a-b\right)^2\ge0\forall a,b\)

         \(\Leftrightarrow a^2-2ab+b^2\ge0\)

Mà \(a^2+b^2=c^2\left(Py-ta-go\right)\)

\(\Rightarrow c^2-2ab\ge0\)

\(\Leftrightarrow c^2\ge2ab\)

\(\Leftrightarrow2c^2\ge a^2+b^2+2ab\)( Do c2=a2+b2)

\(\Leftrightarrow2c^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow c\sqrt{2}\ge a+b\)( ĐPCM ) 

3 tháng 9 2018

Ta có a+b \(\le\)c√2

<=> (a+b) 2\(\le\)(c√2)2

<=> a2+2ab+b2\(\le\)2c2

<=> a2+2ab+b2 \(\le\)2(a2+b2) = 2a2+2b2

<=> 0 \(\le\)a2-2ab+b2 = (a-b)2 ( luôn đúng)

=> a+b \(\le\)c√2

1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.4. Chứng minh rằng :...
Đọc tiếp

1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.

2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.

3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.

4. Chứng minh rằng : Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác.

5. Cho a, b, c dương nhỏ hơn 1. Chứng minh rằng ít nhất một trong ba bất đẳng thức sau sai

a( 1 - b) > 1/4 ; b( 1- c) > 1/4 ; c( 1 - a ) > 1/4 

6. Chứng minh rằng \(\sqrt{ }\)2 là số vô tỉ

7. Cho các số a, b, c thỏa mãn các điều kiện: 

{ a+ b+ c> 0             (1)

{ ab + bc + ca > 0    (2)       

{ abc > 0                    ( 3)

CMR : cả ba số a, b, c đều dương

8. Chứng minh bằng phản chứng định lí sau : "Nếu tam giác ABC có các đường phân giác trong BE, CF bằng nhau, thì tam giác ABC cân".

9. Cho 7 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 100. CMR luôn tìm được 3 đoạn để có thể ghép thành 1 tam giác.

2
11 tháng 7 2018

Này là toán lớp 7

11 tháng 7 2018

Lớp 10 đấy

27 tháng 11 2019

Đặt \(\frac{\left(a+b-c\right)}{2}=x;\frac{\left(c+a-b\right)}{2}=y;\frac{\left(b+c-a\right)}{2}=z\) thì x, y, z > 0(do a, b, c là độ dài 3 cạnh tam giác)

Và \(a=x+y;b=x+z;c=y+z\)

Thay vào, ta cần chứng minh: \(2\left[xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+6xyz\right]>0\) (luôn đúng do x, y, z > 0)

Done!

16 tháng 9 2017

Nguyet9ak47 mk ko bt có đúng ko nhưng bn tham khảo nhé:

ta co a+b>c suy ra 2c<a+b+c=2 =>c<1,a<1,b<1 
(1-a)(1-b)(1-c)>0 
=>ab+bc+ac>1+abc 
lai co 
4=2(ab+bc+ac)+a2+b2+c2 
tu do suy ra 
4>a2+b2+c2+2(1+abc)=>a2+b2+c2+2abc<2=>... a,b,c>0) 
P/s: Nguyet9ak47, Chứng minh rằng sao bn ko viết là CMR

21 tháng 1 2018

Câu trả lời hay nhất:  Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2 
--> a + b + c = 2 

Trong 1 tam giác thì ta có: 
a < b + c 
--> a + a < a + b + c 
--> 2a < 2 
--> a < 1 

Tương tự ta có : b < 1, c < 1 

Suy ra: (1 - a)(1 - b)(1 - c) > 0 
⇔ (1 – b – a + ab)(1 – c) > 0 
⇔ 1 – c – b + bc – a + ac + ab – abc > 0 
⇔ 1 – (a + b + c) + ab + bc + ca > abc 

Nên abc < -1 + ab + bc + ca 
⇔ 2abc < -2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2 
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2 
⇔ a² + b² + c² + 2abc < 2 

--> đpcm 

p/s: kham khảo