Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do hai tam giác có độ dài 3 cạnh là a,b,c và a',b',c' nên ta có tỷ lệ sau
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Đặt \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=k\) \(\Rightarrow\hept{\begin{cases}a=k.a'\\b=k.b'\\c=k.c'\end{cases}}\)
Ta có : \(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{ka'.a'}+\sqrt{kb'.b'}+\sqrt{kc'.c'}\)
\(=a'.\sqrt{k}+b'.\sqrt{k}+c'.\sqrt{k}=\sqrt{k}.\left(a'+b'+c'\right)\)
Ta lại có : \(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k.\left(a'+b'+c'\right)\left(a'+b'+c'\right)}=\sqrt{k}.\left(a'+b'+c'\right)\)
Vậy ......
Ta có:
\(a< b+c\)
\(\Leftrightarrow2a< a+b+c=2\)
\(\Leftrightarrow a< 1\)
Tương tự ta cũng có:
\(\hept{\begin{cases}b< 1\\c< 1\end{cases}}\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)
\(\Leftrightarrow-abc+ab+bc+ca-a-b-c+1>0\)
\(\Leftrightarrow abc< \left(ab+bc+ca\right)-1\)
\(\Leftrightarrow2abc< 2\left(ab+bc+ca\right)-2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2+2=4-2=2\)
Do a,b,c là 3 cạnh của 1 tam giác nên dễ dàng suy ra được a,b,c < 1
Từ đó ta có (1-a)(1-b)(1-c)>0
Suy ra:
Suy ra ĐCCM?
Ta có a < b + c; b < c + a; c < a + b nên từ a + b + c = 2 suy ra a, b, c < 1.
BĐT cần cm tương đương:
\(\left(a+b+c\right)^2+2abc< 2\left(ab+bc+ca\right)+2\)
\(\Leftrightarrow abc-\left(ab+bc+ca\right)+1< 0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)< 0\).
Bất đẳng thức trên luôn đúng do a, b, c < 1.
Vậy ta có đpcm.
Nguyet9ak47 mk ko bt có đúng ko nhưng bn tham khảo nhé:
ta co a+b>c suy ra 2c<a+b+c=2 =>c<1,a<1,b<1
(1-a)(1-b)(1-c)>0
=>ab+bc+ac>1+abc
lai co
4=2(ab+bc+ac)+a2+b2+c2
tu do suy ra
4>a2+b2+c2+2(1+abc)=>a2+b2+c2+2abc<2=>... a,b,c>0)
P/s: Nguyet9ak47, Chứng minh rằng sao bn ko viết là CMR
Câu trả lời hay nhất: Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2
--> a + b + c = 2
Trong 1 tam giác thì ta có:
a < b + c
--> a + a < a + b + c
--> 2a < 2
--> a < 1
Tương tự ta có : b < 1, c < 1
Suy ra: (1 - a)(1 - b)(1 - c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
⇔ 2abc < -2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
⇔ a² + b² + c² + 2abc < 2
--> đpcm
p/s: kham khảo
a, b, c là độ dài 3 cạnh của tgiác nên ta có: b+c > a => ab+ac > a²
tương tự: bc+ab > b²; ca+bc > c²
cộng lại: 2ab+2bc+2ca > a²+b²+c² (*)
gthiết: 4 = (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca > a²+b²+c² + a²+b²+c² {ad (*)}
=> 2 > a²+b²+c² (đpcm)
đúng nha