K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét BĐT: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy},\forall x,y\ge1\)

Chứng minh: Quy đồng ta được: \(\left(1+xy\right)\left(1+y^2\right)+\left(1+xy\right)\left(1+x^2\right)\ge2\left(1+x^2\right)\left(1+y^2\right)\)

\(\Leftrightarrow1+y^2+xy+xy^3+1+x^2+xy+x^3y\ge2+2x^2+2y^2+2x^2y^2\)

\(\Leftrightarrow2xy+xy^3+x^3y\ge x^2+y^2+2x^2y^2\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\)đúng \(\forall x,y\ge1\)

Không mất tính tổng quát giả sử c là số nhỏ nhất trong 3 số a, b, c

Áp dụng BDDT phía trên: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

Cần chứng minh: \(\frac{2}{1+ab}+\frac{1}{1+c^2}\ge\frac{3}{1+abc}\Leftrightarrow2\left(\frac{1}{1+ab}-\frac{1}{1+abc}\right)+\frac{1}{1+c^2}-\frac{1}{1+abc}\ge0\)

\(\Leftrightarrow\frac{2ab\left(c-1\right)}{\left(1+ab\right)\left(1+abc\right)}+\frac{c\left(ab-c\right)}{\left(1+c^2\right)\left(1+abc\right)}\ge0\)đúng \(\forall a,b\ge c\ge1\)

Vậy BĐT đã được chứng minh, dấu = xảy ra khi a=b=c=1

4 tháng 3 2021

cảm ơn nha

12 tháng 3 2022

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

1:

a chia 5 dư 3 nên a=5k+3

b chia 5 dư 2 nên b=5c+2

a*b=(5k+3)(5c+2)

=25kc+10k+15c+6

=5(5kc+2k+3c+1)+1 chia 5 dư 1

2:

Gọi ba số liên tiếp là a;a+1;a+2

Theo đề, ta có: 

(a+1)(a+2)-a(a+1)=50

=>a^2+3a+2-a^2-a=50

=>2a+2=50

=>2a=48

=>a=24

=>Ba số cần tìm là 24;25;26

11 tháng 6 2019

•๖ۣۜAƙαĭ ๖ۣۜHαɾυмα•™ [ RBL ] ❧PEWDS☙ chỉ biết đi copy thôi à ?

a) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

b) \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\cdot\left(-c\right)\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)( đpcm )

ta xét vế trái a^3+b^3+c^3= 
[(a+b)(a^2-ab+b^2)]+c^3.(1) 
Mà theo giả thuyết a+b+c=0 suy ra c= - (a+b)suy ra 
c^3= -(a+b)^3 
Thay vào`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3 
(nhân tử chúng ta có)=(a+b)[a^2-ab+b^2-(a+b)^2] 
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)] 
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2) 
=(a+b).(-3ab) 
= -(a+b).3ab (2) 
theo giả thuyết ta có: a+b+c=0 suy ra c= -(a+b) 
thay vào (2) ta dc 
=3abc 
ta kết luận :vế trái= vế phải 

chúc bn hc tốt

NV
2 tháng 3 2023

Do \(0\le a;b;c\le2\) 

\(\Rightarrow abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-4\left(a+b+c\right)+8\ge0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\)

\(\Leftrightarrow\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\ge4\)

\(\Leftrightarrow9-\left(a^2+b^2+c^2\right)\ge4\)

\(\Leftrightarrow a^2+b^2+c^2\le5\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị