Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có; \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)
Tương tự : \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\)
\(\frac{c^2}{c+a}+\frac{c+a}{4}\ge c\)
Cộng từng vế ta có:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}+\frac{a+b+c}{2}\ge a+b+c\)
\(\Leftrightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}=\frac{1}{2}\)
Áp dụng BĐT AM-GM: \(1+b^2\ge2b\)
\(\Rightarrow\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng vế với vế 3 BĐT trên ta được: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}=3-\frac{ab+bc+ca}{2}\)
Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
Nên \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{\left(a+b+c\right)^2}{6}=3-\frac{9}{6}=\frac{3}{2}\)(đpcm).
Dấu "=" xảy ra <=> a=b=c=1.
ơ đang chờ mấy bạn top bxh vô trả lời mà hỏng thấy đou
hộ mình với:(
Ta có : \(\frac{a}{b^2c^2}+\frac{b}{c^2a^2}+\frac{c}{a^2b^2}=\frac{a^4}{a^3b^2c^2}+\frac{b^4}{b^3c^2a^2}+\frac{c^4}{c^3a^2b^2}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel và giả thiết a2 + b2 + c2 = 3abc ta có :
\(\frac{a^4}{a^3b^2c^2}+\frac{b^4}{b^3c^2a^2}+\frac{c^4}{c^3a^2b^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b^2c^2\left(a+b+c\right)}=\frac{\left(3abc\right)^2}{a^2b^2c^2\left(a+b+c\right)}=\frac{9}{a+b+c}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c=1
câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m