Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Svac - xơ:
\(T=\frac{a}{a^2+8bc}+\frac{b}{b^2+8ca}+\frac{c}{c^2+8ab}\)
\(=\frac{a^2}{a^3+8abc}+\frac{b^2}{b^3+8abc}+\frac{c^2}{c^3+8abc}\)\(\ge\frac{\left(a+b+c\right)^2}{a^3+b^3+c^3+24abc}\)
Ta lại có: \(\left(a+b+c\right)^3=a^3+b^3+c^3+\)\(3\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)
\(\ge a^3+b^3+c^3+27\sqrt[3]{abc}.\sqrt[3]{\left(abc\right)^2}-3abc=\)\(a^3+b^3+c^3+24abc\)
Lúc đó: \(T\ge\frac{1}{a+b+c}=1\)
(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))
\(\frac{a^3}{a^2+b^2}=\frac{a^3+ab^2-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)
mấy cái kia tương tự
=> P \(\ge a+b+c-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}=\frac{a+b+c}{2}=1008\)
Vậy Min P = 1008 khi x =y = z = 672
Ồ sorry bạn nhiều, chỗ đấy bị lỗi kĩ thuật rồi, mình sửa lại nhé :
\(M\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
Lại có : \(\frac{ab+bc+ca}{2}\ge\frac{3\sqrt{a^3b^3c^3}}{2}=\frac{3}{2}\)
Do đó : \(M\ge\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Ta có : \(\frac{1}{a^3\left(b+c\right)}=\frac{\frac{1}{a^2}}{a\left(b+c\right)}=\frac{\left(\frac{1}{a}\right)^2}{a\left(b+c\right)}\)
Tương tự : \(\frac{1}{b^3\left(a+c\right)}=\frac{\left(\frac{1}{b}\right)^2}{b\left(a+c\right)}\) , \(\frac{1}{c^3\left(a+b\right)}=\frac{\left(\frac{1}{c}\right)^2}{c\left(a+b\right)}\)
Ta thấy : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Áp dụng BĐT Svacxo ta có :
\(M=\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^2\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\) \(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Vâỵ \(M_{min}=\frac{3}{2}\) tại \(a=b=c=1\)
\(A=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
\(\ge\frac{\left(a+b+c\right)^2}{a+b+b+c+c+a}\)
\(=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{1}{2}\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
:D
\(\frac{1}{a\left(a^2+8bc\right)}+\frac{1}{b\left(b^2+8ca\right)}+\frac{1}{c\left(c^2+ab\right)}\le\frac{1}{3abc}\)
\(\Leftrightarrow\frac{1}{\frac{a^2}{bc}+8}+\frac{1}{\frac{b^2}{ca}+8}+\frac{1}{\frac{c^2}{ab}+8}\le3\) (*)
Đặt \(\frac{a^2}{bc}=x;\frac{b^2}{ca}=y;\frac{c^2}{ab}=z\left(x,y,z>0\right)\)
(*)\(\Leftrightarrow\frac{1}{x+8}+\frac{1}{y+8}+\frac{1}{z+8}\le\frac{1}{3}\)
\(\Leftrightarrow16\left(x+y+z\right)+5\left(xy+yz+zx\right)\ge63\)(**)
(**) đúng bởi \(x+y+z\ge3\sqrt[3]{xyz}=3;xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}=3\)
Áp dụng BĐT Svac - xơ
\(T=\frac{a}{a^2+8bc}+\frac{b}{b^2+8ca}+\frac{c}{c^2+8ab}\)
\(=\frac{a^2}{a^3+8abc}+\frac{b^2}{b^3+8abc}+\frac{c^2}{c^3+8abc}\ge\frac{\left(a+b+c\right)^2}{a^3+b^3+c^3+24abc}\)
Ta lại có : \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)
\(\ge a^3+b^3+c^3+27\sqrt[3]{abc}.\sqrt[3]{\left(abc\right)^2}-3abc=a^3+b^3+c^3+24abc\)
Lúc đó : \(T\ge\frac{1}{a+b+c}=1\)
Dấu " = " xay ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)