Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)
\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)
\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)
\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
\(a^2+2b^2+3=a^2+b^2+b^2+1+2\ge2ab+2b+2\)
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)=\frac{1}{2}\)
(Đẳng thức quen thuộc \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\) khi \(abc=1\) bạn tự chứng minh, mất khoảng 2 dòng)
Ta có: \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)\(;b^2+1\ge2\sqrt{b^2\cdot1}=2b\)
\(\Rightarrow a^2+2b^2+3\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2}\left(ab+b+1\right)\left(1\right)\). Tương tự ta có:
\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}\left(bc+c+1\right)\left(2\right);\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\left(ac+a+1\right)\left(3\right)\)
Cộng theo vế của (1);(2) và (3) ta có:
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)
\(\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}\right)=\frac{1}{2}\) (vì abc=1)
Suy ra Đpcm. Dấu "=" khi a=b=c=1
\(\frac{1}{a^2+2b^2+3}=\frac{1}{a^2+b^2+2+b^2+1}\le\frac{1}{2ab+2+2b}=\frac{1}{2}\left(\frac{1}{ab+b+1}\right)\)
Tương tự ..
\(\Rightarrow\frac{1}{a^2+2b^2+2}+\frac{1}{b^2+2c^2+2}+\frac{1}{c^2+2a^2+2}\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
Mà :\(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{abc}{b\left(ac+a+1\right)}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}=\frac{ac+a+1}{ac+a+1}=1\)(do abc=1)
\(\Rightarrow\)dpcm
Dấu = xảy ra khi a=b=c=1
Ta có: \(\left\{\begin{matrix}a^2+b^2\ge2ab\\b^2+1\ge2b\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}=\frac{1}{2\left(ab+b+1\right)}\)
Tương tự ta có:\(\left\{\begin{matrix}\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\\\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\end{matrix}\right.\)
Cộng theo vế của 3 BĐT trên ta có:
\(VT\le\frac{1}{2\left(ab+b+1\right)}+\frac{1}{2\left(bc+c+1\right)}+\frac{1}{2\left(ac+a+1\right)}\)
\(=\frac{1}{2}\left(\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}\right)\left(abc=1\right)\)
\(=\frac{1}{2}\left(\frac{ac+a+1}{ac+a+1}\right)=\frac{1}{2}\) (Đpcm)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}abc=1\\a=b=c\\a,b,c>0\end{matrix}\right.\)\(\Rightarrow a=b=c=1\)
+ \(\frac{1}{a^2+2b^2+3}=\frac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\le\frac{1}{2\left(ab+b+1\right)}\) . Dấu "=" \(\Leftrightarrow a=b=1\)
+ Tương tự : \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\). Dấu "=" \(\Leftrightarrow b=c=1\)
\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ca+a+1\right)}\). Dấu "=" \(c=a=1\)
Do đó : \(VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{abc\cdot b+abc+ab}+\frac{b}{abc+ab+b}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}\right)=\frac{1}{2}\)
Dấu "=" \(\Leftrightarrow a=b=c=1\)