Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=b=c=1\rightarrow P=5\)ta se cm P=5 la gtln cua P that vay ta se cm
\(5p^3+27r\ge18pq\Leftrightarrow5p^3+27r-18pq\ge0\).theo bdt schur
\(LHS\ge5p^3+3p\left(4q-p^2\right)-18pq=2p\left(p^2-3q\right)\ge0\)
Vay \(P_{max}=5\leftrightarrow a=b=c=1\)
Lời giải:
Áp dụng BĐT AM-GM:
\(P=\sum \sqrt{\frac{ab}{c+ab}}=\sum \sqrt{\frac{ab}{c(a+b+c)+ab}}=\sum \sqrt{\frac{ab}{(c+a)(c+b)}}\)
\(\leq \sum \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)
Vậy $P_{\max}=\frac{3}{2}$ khi $a=b=c=\frac{1}{3}$
Có bất đẳng thức xy+zt≥x+zy+txy+zt≥x+zy+t với x,z≥0x,z≥0 ,y,t>0y,t>0
Giả sử cc lớn nhất trong các số a,b,ca,b,c thì c≥13c≥13
Do a,b,c≥0a,b,c≥0 nên
Ta có P2≥aa+1+bb+1+cc+1≥a+ba+b+2+cc+1P2≥aa+1+bb+1+cc+1≥a+ba+b+2+cc+1
Mà a+ba+b+2+cc+1−12=1−c3−c+c−12(c+1)=(1−c)(3c−1)(3−c)(2c+2)≥0
\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)
CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)
\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)
\(a^4+b^4+a^4+a^4\ge4\sqrt[4]{a^{12}b^4}=4a^3b\)
\(a^4+b^4+b^4+b^4\ge4\sqrt[4]{a^4b^{12}}=4ab^3\)
\(\Rightarrow4\left(a^4+b^4\right)\ge4\left(a^3b+ab^3\right)\Rightarrow a^4+b^4\ge a^3b+ab^3\)
\(F=\Sigma\frac{ab}{a^4+b^4+ab}\le\Sigma\frac{ab}{a^3b+ab^3+ab}=\Sigma\frac{1}{a^2+b^2+1}=\Sigma\frac{2}{2a^2+2b^2+2}\)
\(\le\Sigma\frac{1}{ab+a+b}\)
Đến đây bí :(
\(6=a+b+c+ab+bc+ca\ge6\sqrt[6]{a^3b^3c^3}\)
\(\Rightarrow a^3b^3c^3\le1\Rightarrow abc\le1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đề bài bị nhầm phải ko bạn.
Ta đặt P=\(\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\) .Ta cần chứng minh P\(\ge3\)\(\dfrac{b^3}{a}+ab\ge2b^2;\dfrac{a^3}{c}+ac\ge2a^2;\dfrac{c^3}{b}+bc\ge2c^2\Rightarrow\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\ge2a^2+2b^2+2c^2-ab-ca-bc\ge ab+bc+ca\Rightarrow2\cdot P\ge2ab+2bc+2ca\left(1\right)\) \(\dfrac{b^3}{a}+a+1\ge3b;\dfrac{a^3}{c}+c+1\ge3a;\dfrac{c^3}{b}+b+1\ge3c\Rightarrow\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\ge3a+3b+3c-3-a-b-c=2a+2b+2c-3\left(2\right)\) Cộng từng vế của 2 bđt (1) và (2) ta được:
\(\Rightarrow3\cdot\left(\dfrac{b^3}{a}+\dfrac{a^3}{c}+\dfrac{c^3}{b}\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=12-3=9\Rightarrow3P\ge9\Rightarrow P\ge3\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)
Ta có: \(\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}}{2}\)
\(\frac{ca}{\sqrt{b+ac}}=\frac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{\frac{ca}{a+b}+\frac{ca}{b+c}}{2}\)
\(\frac{ab}{\sqrt{c+ab}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{ab}{a+c}+\frac{ab}{b+c}}{2}\)
Cộng 3 vế ta được: \(P\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{a+b}+\frac{ca}{b+c}+\frac{ab}{a+c}+\frac{ab}{b+c}}{2}\)
\(=\frac{\frac{c\left(a+b\right)}{a+b}+\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}}{2}=\frac{a+b+c}{2}=\frac{1}{2}\)
Vậy MinP = 1/2
\(\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{a.1+bc}}=\frac{bc}{\sqrt{a\left(a+b+c\right)+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{bc}{a+b}+\frac{bc}{a+c}\)
Ta có:
\(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)+\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\)
\(\ge2a+2b+2c+2ab+2bc+2ca=12\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)
\(\Rightarrow a^2+b^2+c^2\ge3\)
\(P=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}\)
\(P\ge a^2+b^2+c^2\ge3\)
\(P_{min}=3\) khi \(a=b=c=1\)