K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

Theo đề ra\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

Mà: a + b + c khác 0  => a = b = c

=> P = (1 + 1)(1 + 1)(1 + 1) = 2 . 2 . 2 = 8

6 tháng 12 2016

Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\)

Thế vào bài toán trở thành 

Cho: \(\frac{x+z}{xz}+\frac{x+y}{xy}+\frac{y+z}{yz}=2013\left(1\right)\)

Tính \(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Từ (1) ta có

\(\left(1\right)\Leftrightarrow\frac{xy+yz+zx+yz+xy+zx}{xyz}=2013\)

\(\Leftrightarrow\frac{2\left(xy+yz+zx\right)}{xyz}=2013\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)

Ta lại có

\(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)

6 tháng 12 2016

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)

\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)

\(\Rightarrow M=\frac{2013}{2}\)

15 tháng 10 2018

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Leftrightarrow\)\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Leftrightarrow\)\(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}\)

+) Nếu \(a+b+c=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow\)\(P=\frac{-c}{a}.\frac{-a}{b}.\frac{-b}{c}=\frac{-abc}{abc}=-1\)

+) Nếu \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{3\left(a+b+c\right)}{a+b+c}=3\)

Suy ra : 

\(\frac{a+b+c}{c}=3\)\(\Leftrightarrow\)\(a+b=2c\)

\(\frac{a+b+c}{a}=3\)\(\Leftrightarrow\)\(b+c=2a\)

\(\frac{a+b+c}{b}=3\)\(\Leftrightarrow\)\(c+a=2b\)

\(\Rightarrow\)\(P=\frac{2c}{a}.\frac{2a}{b}.\frac{2b}{c}=\frac{8abc}{abc}=8\)

Vậy \(P=-1\) hoặc \(P=8\)

Chúc bạn học tốt ~ 

15 tháng 10 2018

ta có: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}.\)\(=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\end{cases}}}\) => a+ c = a +b - c + b+c-a => a + c = 2b

tương tự như trên ta có: a + b = 2c; b + c = 2a

=> a=b=c

\(\Rightarrow P=\left(1+\frac{b}{a}\right).\left(1+\frac{c}{b}\right).\left(1+\frac{a}{c}\right)=\left(1+\frac{a}{a}\right).\left(1+\frac{c}{c}\right).\left(1+\frac{a}{a}\right)\)\(=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\) ( a,b,c khác 0 )

16 tháng 12 2016

Áp dụng tc của dãy tỉ số bằng nhau ta cso:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}\)\(\Rightarrow\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}\)

Có: \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{c}{a}\right)\)

\(=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)

16 tháng 12 2016

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)(T/C...)

Xét a+b+c=0

\(\Rightarrow a+b=-c,b+c=-a,c+a=-b\)

\(\Rightarrow P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}\cdot\frac{b+c}{b}\cdot\frac{c+a}{c}=\frac{-c}{a}\cdot\frac{-a}{b}\cdot\frac{-b}{c}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{a\cdot b\cdot c}=-1\)

Xét a+b+c\(\ne0\Rightarrow a+b=2c,b+c=2a,c+a=2b\)

\(\Rightarrow P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a\cdot b\cdot c}=\frac{2c\cdot2a\cdot2b}{a\cdot b\cdot c}=8\)

Vậy P=8 hoặc P=-1

 

1 tháng 2 2020

Ta có :

\(VT=\frac{1}{2}\left[\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\right]\)

\(=\frac{1}{2}\left[\frac{\left(b-c\right)^2}{\left(a-b\right)\left(a-c\right)}+\frac{\left(a-c\right)^2}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\frac{\left(a-b\right)^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)

\(=\frac{1}{2}\left[\frac{\left(b-c\right)^2+\left(a-c\right)^2+\left(a-b\right)^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)

\(=\frac{1}{2}\left[\frac{b^2-2bc+c^2+a^2-2ac+c^2+a^2-2ab+b^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)

\(=\frac{1}{2}\left[\frac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)

\(=\frac{a^2+b^2+c^2-ab-bc-ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)(1)

Lại có :

\(VP=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=\frac{\left(b-c\right)\left(a-c\right)+\left(a-b\right)\left(a-c\right)-\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{ab-bc-ac+c^2+a^2-ac-ab+bc-ab+ac+b^2-bc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{a^2+b^2+c^2-ab-ac-bc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)(2)

Từ (1) và (2) \(\RightarrowĐPCM\)

3 tháng 3 2019

help me

=>\(\frac{a-b+c}{2b}+1=\frac{c-a+b}{2a}+1=\frac{a-c+b}{2c}+1\)

\(\Rightarrow\frac{a+b+c}{2b}=\frac{a+b+c}{2a}=\frac{a+b+c}{2c}\)

*TH1: nếu a+b+c=0 => a+b=-c; b+c=-a; c+a=-b

=>P=\(\left(\frac{b+c}{b}\right)\left(\frac{a+b}{a}\right)\left(\frac{c+a}{c}\right)\)

=\(\frac{-a}{b}.\frac{-c}{a}.\frac{-b}{c}=\frac{-\left(a.b.c\right)}{a.b.c}=-1\)

*TH2: Nếu a+b+c khác 0: thì a=b=c

Khi đó P=2.2.2=8

Vậy P= -1 hoặc 8

18 tháng 12 2016

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)(T/C...)

Xét a+b+c=0

\(\Rightarrow a+b=-c,c+b=-a,a+c=-b\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)

Xét a+b+c\(\ne0\)

\(\Rightarrow a+b=2c,b+c=2a,c+a=2b\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{2c}{b}\cdot\frac{2a}{c}\cdot\frac{2b}{a}=8\)

 

18 tháng 12 2016

Giải:
+) Xét a + b + c = 0

\(\Rightarrow-a=b+c\)

\(\Rightarrow-b=a+c\)

\(\Rightarrow-c=a+b\)

Ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{-c}{c}=\frac{-a}{a}=\frac{-b}{b}=-1\)

Lại có: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=-1\)

+) Xét \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Ta có:

\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=2.2.2=8\)

Vậy M = -1 hoặc M = 8

18 tháng 7 2017

Áp dụng t/c dãy tỉ số = nhau

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) 

\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\) 

Tương tự \(b+c=2a;;c+a=2b\) 

\(\Rightarrow D=\left(\frac{a+b}{a}\right)\left(\frac{b+c}{b}\right)\left(\frac{c+a}{c}\right)=\left(\frac{2c}{a}\right)\left(\frac{2a}{b}\right)\left(\frac{2b}{c}\right)=8\)

18 tháng 7 2017

Theo đề ta có :

\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{a+c-b}{b}+2\)

\(\Rightarrow\frac{a+b-c+2c}{c}=\frac{b+c-a+2a}{a}=\frac{a+c-b+2b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow\left(a+b+c\right).\frac{1}{c}=\left(a+b+c\right)\frac{1}{c}=\left(a+b+c\right)\frac{1}{b}\)

(vì  \(a\ne b\ne c\ne0\) \(\frac{\Rightarrow1}{a}\ne\frac{1}{b}\ne\frac{1}{c}\ne0\) \(\Rightarrow a+b+c=0\))

* a+b+c=0

=>a+b=-c ; b+c=-a ; a+c =-b

\(D=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\)

\(=\frac{a+b}{a}.\frac{b+c}{b}.\frac{a+c}{c}=\frac{-c.-a.-b}{a.b.c}=\frac{-1.\left(a.b.c\right)}{a.b.c}=-1\)

Vậy : D=-1