Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có EF//BC (gt), theo đ/lí Ta-lét có: \(\frac{AE}{EB}=\frac{\text{AF}}{FC}\)
=> AF = x = \(\frac{AE.FC}{EB}=\frac{6.4}{3}=8\left(cm\right)\)
=> AC = AF + FC = 8 + 4 = 12 (cm); AB = AE + EB = 6 + 3 = 9 (cm)
Xét ΔABC có AD là p/g \(\widehat{BAC}\) => \(\frac{BD}{CD}=\frac{AB}{AC}\)
=> BD = y = \(\frac{AB.CD}{AC}=\frac{9.6}{12}=4,5\left(cm\right)\)
=> BC = BD + CD = 4,5 + 6 = 10,5 (cm)
Xét ΔABC có EF//BC (gt) => \(\frac{EF}{BC}=\frac{AE}{AB}=\frac{6}{9}=\frac{2}{3}\) (hệ quả đ/lí Ta-lét)
=> EF = z = \(\frac{2}{3}BC=\frac{2}{3}.10,5=7\left(cm\right)\)
https://hoc24.vn/hoi-dap/question/944747.html?pos=2499332
vào link này nha bn
Xét ΔABC có FE//BC
nên \(\dfrac{AE}{EB}=\dfrac{AF}{FC}\)
=>\(\dfrac{3}{FC}=\dfrac{6}{10}=\dfrac{3}{5}\)
=>FC=5(cm)
Áp dụng Ta lét trong tam giác ABC (EF//BC),ta có
\(\frac{AE}{AB}=\frac{AF}{AC}=\frac{EF}{BC}\Leftrightarrow\frac{3}{3+6}=\frac{1}{3}=\frac{AF}{AF+5}=\frac{6}{BC}\)
NÊN \(\frac{AF}{AF+5}=\frac{1}{3}\Leftrightarrow3AF=AF+5\Leftrightarrow AF=\frac{5}{2}\)
\(\Rightarrow AC=AF+FC=2,5+5=7,5\)
\(\frac{6}{BC}=\frac{1}{3}\Leftrightarrow BC=18\)
Ta có : EF // BC ⇒ ΔAEF đồng dạng ΔABC
⇒ \(\dfrac{AE}{AB}=\dfrac{EF}{BC}\) mà AB = AE + EB = 3 + 5 = 8 cm
⇒ \(EF=\dfrac{AE.BC}{AB}=\dfrac{3.6}{8}=2,25cm\)
Vậy EF = 2,25 cm
a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Xét tam giác ABC có AD là đường phân giác trong của tam giác ABC (gt)
\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\left(tc\right)\)
\(\Rightarrow\frac{BD}{DC}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{3}=\frac{DC}{4}=\frac{BD+DC}{3+4}\frac{10}{7}\)(tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\\DC=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\end{cases}}\)
b)Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)
c) Xét tam giác ADB có DE là đường phân giác trong của tam giác ADB(gt)
\(\Rightarrow\frac{EA}{EB}=\frac{AD}{BD}\left(tc\right)\)
Xét tam giác ADC có DF là đường phân giác trong của tam giác ADC (gt)
\(\Rightarrow\frac{FC}{FA}=\frac{DC}{DA}\left(tc\right)\)
\(\Rightarrow\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{AD}{BD}.\frac{DB}{DC}.\frac{DC}{DA}=1\left(đpcm\right)\)
a) Áp dụng định lý Ta-let vào \(\Delta\)ABC, ta có:
\(\frac{AE}{BE}=\frac{AF}{FC}\)
\(\rightarrow\frac{6}{3}=\frac{x}{4}\)
\(\rightarrow x=8\)
Gọi AD là a, ta có:
\(\frac{AF}{FC}=\frac{AD}{DC}\)
\(\rightarrow\frac{6}{3}=\frac{a}{6}\)
\(\rightarrow a=12\)
Vậy:
\(\frac{AE}{BE}=\frac{AD}{BD}\)
\(\rightarrow\frac{6}{3}=\frac{12}{y}\)
\(\rightarrow y=6\)
Áp dụng hệ quả TaLet vào \(\Delta\)ABC, ta có:
\(\frac{EF}{BC}=\frac{AE}{BE}\)
\(\rightarrow\frac{z}{12}=\frac{6}{3}\)
\(\rightarrow z=24\)