Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét \(\Delta ABC\) có
\(\widehat{ABC}+\widehat{ACB}=90^o\) (1)
Ta có
\(\widehat{ABD}=\widehat{ABC}\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn là phân giác của góc tạo bởi 2 tiếp tuyến) (2)
Ta có
\(\widehat{ACE}=\widehat{ACB}\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn là phân giác của góc tạo bởi 2 tiếp tuyến) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{ABD}+\widehat{ACE}=90^o\)
\(\Rightarrow\widehat{ABD}+\widehat{ACE}+\widehat{ABC}+\widehat{ACB}=180^o\)
\(\Rightarrow\left(\widehat{ABD}+\widehat{ABC}\right)+\left(\widehat{ACE}+\widehat{ACB}\right)=\widehat{DBC}+\widehat{ECB}=180^o\)
=> BD//CE (hai đường thẳng bị cắt bởi đường thẳng thứ 3 có hai góc trong cùng phía bù nhau thì chúng // với nhau)
Ta có
\(AD\perp BD\Rightarrow AD\perp CE\)
\(AE\perp CE\Rightarrow AE\perp BD\)
=> AD và AE cùng vuông góc với BD => AD và AE trùng nhau (Từ 1 điểm ở ngoài 1 đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => D; A; E thẳng hàng
b/
Ta có \(\Delta ABC\) vuông tại A => A thuộc đường tròn đường kính BC. Gọi I là trung điểm BC nối AI ta có
BD//CE => BDEC là hình thang
AD=AE (bán kính (O))
IB=IC
=> AI là đường trung bình của hình thang BDEC => AI//CE mà \(CE\perp DE\Rightarrow AI\perp DE\) => DE là tiếp tuyến của đường tròn đường kính BC hay DE tiếp xúc với đường tròn đường kính BC
a) Theo tính chất của hai của hai tiếp tuyến cắt nhau, ta có:
^DAB=^BAH; ^HAC=^CAE.
Suy ra: ^DAE=^DAB+^BAH+^HAC+^CAE=2^BAH+2^HAC=2^BAC=180o.
Do ^DAE=180o nên DE là đường kính, suy ra D, E, A thẳng hàng.
b) Theo câu a: DE là đường kính đường tròn tâm A.
Có BD⊥DE,CE⊥DE. Suy ra BD//CE.
Gọi O là trung điểm BC.
Vậy tứ giác BDEC là hình thang. Do O và A lần lượt là trung điểm của BC, DE nên OA là đường trung bình của hình thang BDEC.
Suy ra OA⊥DE mà OA=BC2 nên OA là bán kính của đường tròn đường kính BC.
Thế thì tiếp xúc với đường tròn đường kính .
3/
a) theo tính chất 2 tiếp tuyến cắt nhau
ta có : DAB = BAH và HAC = CAE
DAH + HAE = 2(BAH + HAC) = 2.90 = 180
vậy D , A , E thẳng hàng
b,
b) gọi M là trung diểm của BC
mà DA = AE = R
⇒ MA là đường trung bình của hình thang BDEC nên MA // DB ⇒ MA ⊥ DE
mà MA = MB = MC nên MA là bán kính của đường tròn có đường kính BC
vậy DE là tiếp tuyến của đường tròn có đường kính BC
⇔ DE tiếp xúc với đường tròn có đường kính BC (đpcm)
bài 4 làm tương tự
1) Ta có: \(BC^2=5^2=25\)
\(AB^2+AC^2=3^2+4^2=25\)
Do đó: \(BC^2=AB^2+AC^2\)(=25)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\)
2)
a) Xét (A) có
H∈(A)
BH⊥AH tại H(gt)
Do đó: BH là tiếp tuyến của (A)(Dấu hiệu nhận biết tiếp tuyến của đường tròn)
Xét (A) có
H∈(A)
CH⊥AH tại H(gt)
Do đó: CH là tiếp tuyến của (A)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
Xét (A) có
CH là tiếp tuyến có H là tiếp điểm(cmt)
CE là tiếp tuyến có E là tiếp điểm(gt)
Do đó: AC là tia phân giác của \(\widehat{EAH}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{EAH}=2\cdot\widehat{HAC}\)
Xét (A) có
BH là tiếp tuyến có H là tiếp điểm(gt)
BD là tiếp tuyến có D là tiếp điểm(gt)
Do đó: AB là tia phân giác của \(\widehat{HAD}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{HAD}=2\cdot\widehat{BAH}\)
Ta có: \(\widehat{EAH}+\widehat{HAD}=\widehat{EAD}\)(Tia AH nằm giữa hai tia AE,AD)
\(\Leftrightarrow2\cdot\widehat{BAH}+2\cdot\widehat{CAH}=\widehat{EAD}\)
\(\Leftrightarrow\widehat{EAD}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)
\(\Leftrightarrow\widehat{EAD}=2\cdot90^0=180^0\)
hay E,A,D thẳng hàng(đpcm)