K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2019

Tự vẽ hình nhé bạn.

a) Ta có :

M là trung điểm AB 

N là trung điểm BC 

\(\Rightarrow\)MN là đường trung bình trong \(\Delta\)ABC

Do đó : MN = AC / 2 hay AC = 2MN = 2.4 = 8cm

b) Vì MN là đường trung bình của \(\Delta\)ABC 

\(\Rightarrow\)MN // AC ( * )

Vì \(\Delta\)ABC cân tại B nên  = góc C ( ** )

Từ ( * ) và ( ** ) \(\Rightarrow\)Tứ giác AMNC là hình thang cân 

c) Ta có :

  • BM = AB / 2
  • BN = AC / 2

​Mà AB = AC ( \(\Delta\)ABC cân tại B ) 

\(\Rightarrow\)BM = BN nên B nằm trên đường trùg trực của MN ( 1 )

Tương tự chứng minh, ta được :

MI = NI nên I nằm trên đường trung trực của MN ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)BI là đường trung trực của MN ( 3 )

Vì \(\Delta\)ABC cân tại B có BI là đường trung tuyến nên BI cũng đường cao

\(\Rightarrow\)BI \(\perp\)MN ( 4 )

Từ ( 3 ) và ( 4 ) \(\Rightarrow\)B đối xứng với I qua MN

Cho Mình Nhé ~ Thanks ~♤♤

29 tháng 11 2021

helo duy

29 tháng 11 2021

helo duy

Cho tam giác ABC cân tại A có BC = 6cm. Gọi M,N,P lần lượt là trung điểm của AB, AC, BCa) Tính độ dài MN? Chứng minh MBNC là hình thang cânb) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hànhc) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhậtd) Chứng minh AMPN là hình thoia. MN = ?Trong ΔABC có:  M là trung điểm AB (gt)  N là trung điểm AC (gt)⇒ MN là đường trung bình ΔABC⇒ MN =...
Đọc tiếp

Cho tam giác ABC cân tại A có BC = 6cm. Gọi M,N,P lần lượt là trung điểm của AB, AC, BC

a) Tính độ dài MN? Chứng minh MBNC là hình thang cân

b) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hành

c) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhật

d) Chứng minh AMPN là hình thoi

a. MN = ?

Trong ΔABC có:

  M là trung điểm AB (gt)

  N là trung điểm AC (gt)

⇒ MN là đường trung bình ΔABC

⇒ MN = 1/2BC (t/c)

Mà BC = 6cm (gt)

⇒ MN=BC/2=6/2=3(cm)

C/m: BMNC là hình thang cân

Có MN là đường trung bình ΔABC

⇒ MN//BC

⇒ BMNC là hình thang 

Mà góc ABC = góc ACB (ΔABC cân tại A)

⇒ BMNC là hình thang cân (DHNB)

b. C/m: ABCK là hình bình hành

Xét tứ giác ABCK có:

  N là trung điểm AC (gt)

  N là trung điểm BK (K đ/x với B qua M)

⇒ ABCK là hình bình hành (DHNB)

c. C/m: AHBP là hình chữ nhật

Xét tứ giác AHBP có:

  M là trung điểm AB (gt)

  M là trung điểm PH ( H đ/x với P qua M)

⇒ AHBP là hình bình hành (DHNB)

Có ΔABC cân tại A

⇒ AP là trung tuyến đồng thời là đg cao

⇒ góc APB = 90 độ

⇒ AHBP là hình chữ nhật (DHNB)

d) Chứng minh AMPN là hình thoi

Tính giúp mình câu d nha!!!

0
30 tháng 11 2021

a. MN = ?

Trong ΔABC có:

  M là trung điểm AB (gt)

  N là trung điểm AC (gt)

⇒ MN là đường trung bình ΔABC

⇒ MN = 1/2BC (t/c)

Mà BC = 6cm (gt)

⇒ MN=BC/2=6/2=3(cm)

b. C/m: BMNC là hình thang cân

Có MN là đường trung bình ΔABC

⇒ MN//BC

⇒ BMNC là hình thang 

Mà góc ABC = góc ACB (ΔABC cân tại A)

⇒ BMNC là hình thang cân (DHNB)

c. C/m: ABCK là hình bình hành

Xét tứ giác ABCK có:

  N là trung điểm AC (gt)

  N là trung điểm BK (K đ/x với B qua M)

⇒ ABCK là hình bình hành (DHNB)

d. C/m: AHBP là hình chữ nhật

Xét tứ giác AHBP có:

  M là trung điểm AB (gt)

  M là trung điểm PH ( H đ/x với P qua M)

⇒ AHBP là hình bình hành (DHNB)

Có ΔABC cân tại A

⇒ AP là trung tuyến đồng thời là đg cao

⇒ góc APB = 90 độ

⇒ AHBP là hình chữ nhật (DHNB)

30 tháng 11 2021

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của BC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay \(MN=\dfrac{8}{2}=4\left(cm\right)\)

Xét tứ giác ACNM có NM//AC(cmt)

nên ACNM là hình thang có hai đáy là NM và AC(Định nghĩa hình thang)

Hình thang ACNM có \(\widehat{CAM}=90^0\)(gt)

nên ACNM là hình thang vuông(Định nghĩa hình thang vuông)

b) Xét tứ giác ABDC có 

N là trung điểm của đường chéo BC(gt)

N là trung điểm của đường chéo AD(gt)

Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

mà \(\widehat{CAB}=90^0\)(gt)

nên ABDC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

a) \(\Delta ABC\) có: M là trung điểm AB (gt)
                         N là trung điểm AC (gt)
                \(\Rightarrow MN\) là đường trung bình \(\Delta ABC\)
                \(\Rightarrow MN\)//\(BC\)
Tứ giác BMNC có: MN//BC (cmt), \(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A)
                         \(\Rightarrow BMNC\) là hình thang cân (đpcm)
b) AP là đường trung tuyến \(\Delta ABC\) (gt) nên P là trung điểm BC
A và Q đối xứng nhau qua P (gt) nên P là trung điểm AQ
Tứ giác ABQC có: BC và AQ là 2 đường chéo giao nhau tại P
                        mà P là trung điểm BC
                              P là trung điểm AQ
                     \(\Rightarrow ABQC\) là hình bình hành (đpcm)

5 tháng 11 2021

còn AQ = 3AK đâu bạn