Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. MN = ?
Trong ΔABC có:
M là trung điểm AB (gt)
N là trung điểm AC (gt)
⇒ MN là đường trung bình ΔABC
⇒ MN = 1/2BC (t/c)
Mà BC = 6cm (gt)
⇒ MN=BC/2=6/2=3(cm)
b. C/m: BMNC là hình thang cân
Có MN là đường trung bình ΔABC
⇒ MN//BC
⇒ BMNC là hình thang
Mà góc ABC = góc ACB (ΔABC cân tại A)
⇒ BMNC là hình thang cân (DHNB)
c. C/m: ABCK là hình bình hành
Xét tứ giác ABCK có:
N là trung điểm AC (gt)
N là trung điểm BK (K đ/x với B qua M)
⇒ ABCK là hình bình hành (DHNB)
d. C/m: AHBP là hình chữ nhật
Xét tứ giác AHBP có:
M là trung điểm AB (gt)
M là trung điểm PH ( H đ/x với P qua M)
⇒ AHBP là hình bình hành (DHNB)
Có ΔABC cân tại A
⇒ AP là trung tuyến đồng thời là đg cao
⇒ góc APB = 90 độ
⇒ AHBP là hình chữ nhật (DHNB)
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay \(MN=\dfrac{8}{2}=4\left(cm\right)\)
Xét tứ giác ACNM có NM//AC(cmt)
nên ACNM là hình thang có hai đáy là NM và AC(Định nghĩa hình thang)
Hình thang ACNM có \(\widehat{CAM}=90^0\)(gt)
nên ACNM là hình thang vuông(Định nghĩa hình thang vuông)
b) Xét tứ giác ABDC có
N là trung điểm của đường chéo BC(gt)
N là trung điểm của đường chéo AD(gt)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
mà \(\widehat{CAB}=90^0\)(gt)
nên ABDC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a) \(\Delta ABC\) có: M là trung điểm AB (gt)
N là trung điểm AC (gt)
\(\Rightarrow MN\) là đường trung bình \(\Delta ABC\)
\(\Rightarrow MN\)//\(BC\)
Tứ giác BMNC có: MN//BC (cmt), \(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A)
\(\Rightarrow BMNC\) là hình thang cân (đpcm)
b) AP là đường trung tuyến \(\Delta ABC\) (gt) nên P là trung điểm BC
A và Q đối xứng nhau qua P (gt) nên P là trung điểm AQ
Tứ giác ABQC có: BC và AQ là 2 đường chéo giao nhau tại P
mà P là trung điểm BC
P là trung điểm AQ
\(\Rightarrow ABQC\) là hình bình hành (đpcm)
Tự vẽ hình nhé bạn.
a) Ta có :
M là trung điểm AB
N là trung điểm BC
\(\Rightarrow\)MN là đường trung bình trong \(\Delta\)ABC
Do đó : MN = AC / 2 hay AC = 2MN = 2.4 = 8cm
b) Vì MN là đường trung bình của \(\Delta\)ABC
\(\Rightarrow\)MN // AC ( * )
Vì \(\Delta\)ABC cân tại B nên  = góc C ( ** )
Từ ( * ) và ( ** ) \(\Rightarrow\)Tứ giác AMNC là hình thang cân
c) Ta có :
Mà AB = AC ( \(\Delta\)ABC cân tại B )
\(\Rightarrow\)BM = BN nên B nằm trên đường trùg trực của MN ( 1 )
Tương tự chứng minh, ta được :
MI = NI nên I nằm trên đường trung trực của MN ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)BI là đường trung trực của MN ( 3 )
Vì \(\Delta\)ABC cân tại B có BI là đường trung tuyến nên BI cũng đường cao
\(\Rightarrow\)BI \(\perp\)MN ( 4 )
Từ ( 3 ) và ( 4 ) \(\Rightarrow\)B đối xứng với I qua MN
Cho Mình Nhé ~ Thanks ~♤♤