K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2022

từ đề suy ra:

\(\widehat{BAC}=\widehat{DAC}.2=30^o.2=60^o\)

\(\widehat{ABC}=2.\widehat{EBC}=2.30^o=60^o\)

áp dụng đl tổng 3 góc trong của một tam giác :

\(\widehat{ACB}+\widehat{BAC}+\widehat{ABC}=180^o\)

\(\widehat{ACB}+60^o+60^o=180^o\)

\(\Rightarrow\widehat{ACB}=60^o\)

Xét tam giác ABC có 3 góc trong đều bằng nhau và bằng 60\(^o\)

suy ra : ABC là tam giác đều(đpcm)

14 tháng 2 2022

-Ủa vậy chị vẽ hình chưa?

22 tháng 11 2017

Tớ chịu

khó qua toán lớp 8 chết mất

xin lỗi bn nha !

2 tháng 10 2018

Tự vẽ hình

Xét hai tam giác ADB\((\widehat{ADB}=90^O)\) và AEC\((\widehat{AEC=90^O)}\) có:

AB = AC (do tam giác ABC cân tại A)

\(\widehat{A}\):góc chung

=>Tam giác ADB=tam giác AEC (...)

=>AD=AE ( hai cạnh tương ứng )




 

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(AB = AD\) (gt) nên \(A\) thuộc đường trung trực của \(BD\)

\(CB = CD\) (gt) nên \(C\) thuộc đường trung trực của \(BD\)

Vậy \(AC\) là đường trung trực của \(BD\)

b) Xét \(\Delta ABC\) và \(\Delta ADC\) ta có:

\(AB = AD\) (gt)

\(BC = CD\) (gt)

\(AC\) chung

Suy ra: \(\Delta ABC = \Delta ADC\) (c-g-c)

Suy ra: \(\widehat {ABC} = \widehat {ADC} = 95^\circ \) (hai góc tương ứng)

Trong tứ giác \(ABCD\), tổng các góc bằng \(360^\circ \) nên:

\(\widehat A = 360^\circ  - \left( {95^\circ  + 35^\circ  + 95^\circ } \right) = 135^\circ \)

13 tháng 2 2022

 

 

Kẻ AF và CG cùng vuông góc với BD, CH vuông góc với AE.

Xét tam giác ABF và tam giác CAH có:

AFB=CHA=90

AB=CA (vì tam giác abc cân tại A)

ABF=CAH (gt)

=>Tam giác ABF=Tam giác CAH (ch-gn)

=>AF=CH (2 cạnh tương ứng) (1)

Xét tam giác ADF và tam giác CDG có:

AFD=CGD=90

AD=CD (vì D là trung điểm của AC)

ADF=CDG (2 góc đối đỉnh)

=>Tam giác ADF=Tam giác CDG (ch-gn)

=>AF=CG (Hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra: CH=CG

Xét tam giác CEH và tam giác CEG có:

CH=CG (cmt)

CHE=CGE=90

EC cạnh chung

=>Tam giác CEH=Tam giác CEG (ch-cgv)

=>CEH=CEG (hai góc tương ứng)

Mà CEH là góc ngoài đỉnh E của tam giác AEC

      CEG là góc ngoài đỉnh E của tam giác BEC

=>CEH=ECA+EAC và CEG=EBC+ECB

=>ECA+EAC=EBC+ECB (vì CEH+CEG cmt)

=>ECA+EBA=EBC+ECB (vì DAE=ABD) (1)

Lại có: Tam giác ABC cân tại A  =>ACB=ABC

=>ECA+ECB=EBC+EBA (2)

Cộng vế theo vế đẳng thức (1) và (2), ta được:

ECA+EBA+ECA+ECB=EBC+ECB+EBC+EBA

=>2ECA+EBA+ECB=2EBC+ECB+EBA

=>2ECA=2EBC

=>ECA=EBC (ĐPCM)