Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi giao điểm của AK và BN là Q
Ta có:
ˆDMB+ˆMBD=90∘DMB^+MBD^=90∘
Mà ˆAME+ˆMAE=90∘AME^+MAE^=90∘
ˆAME=ˆDMBAME^=DMB^ (2 góc đối đỉnh)
⇒ˆMBD=ˆMAE⇒ˆQAM=ˆMBD⇒MBD^=MAE^⇒QAM^=MBD^
Mà ˆAMN=ˆDMBAMN^=DMB^ (2 góc đối đỉnh)
⇒ˆAMN+ˆQAM=ˆDMB+ˆMBD=90∘⇒AMN^+QAM^=DMB^+MBD^=90∘
⇒ˆAQM=90∘⇒AQM^=90∘
Hay AK vuông góc với BN.
b. Theo câu a: AK vuông góc với BN tại Q
Mà BQ là phân giác của góc ˆIBKIBK^
Khi đó: tam giác IBK có đường cao là đường phân giác nên tam giác IBK cân tại B
Vậy BQ cũng là trung tuyến hay Q là trung điểm của IK.
Chứng minh tương tự: Q là trung điểm của MN
Xét tứ giác MINK có 2 đường chéo giao nhau tại trung điểm mỗi đường, MN vuông góc với IK
Vậy MINK là hình thoi.
Tự vẽ hình
Xét hai tam giác ADB\((\widehat{ADB}=90^O)\) và AEC\((\widehat{AEC=90^O)}\) có:
AB = AC (do tam giác ABC cân tại A)
\(\widehat{A}\):góc chung
=>Tam giác ADB=tam giác AEC (...)
=>AD=AE ( hai cạnh tương ứng )
a: Xét ΔABC vuông tại A có AD là đường cao
nên \(AD^2=BD\cdot CD\)
b: \(CB=\sqrt{3^2+4^2}=5\left(cm\right)\)
AD=3*4/5=2,4cm
c: BI là phân giác
=>DI/IA=DB/BA
AK là phân giác
=>DK/KC=DA/AC
mà DB/BA=DA/AC
nên DI/IA=KD/KC
=>KI//AC
a: Xét ΔAFH vuông tại F và ΔADB vuông tại D có
góc FAH chung
=>ΔAFH đồng dạng ΔADB
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
mà góc FAE chung
nên ΔAFE đồng dạng với ΔACB
góc FEH=góc BAD
góc DEH=góc FCB
mà góc BAD=góc FCB
nên góc FEH=góc DEH
=>EH là phân giác của góc FED