K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

Bài làm:

\(a^3+b^3+c^3\ge3.\sqrt[3]{a^3b^3c^3}=3abc\)(Áp dụng bất đẳng thức Cauchy)

Dấu "=" không xảy ra khi: \(a^3\ne b^3\ne c^3\Rightarrow a\ne b\ne c\)

11 tháng 8 2017

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3abc-3a^2b-3ab^2=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3abc\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Vì a;b;c đôi 1 khác nhau nên \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ne0\)

\(\Rightarrow a+b+c=0\) (đpcm)

11 tháng 8 2017

chuyển vế -> phân tích a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca) -> cm a2+b2+c2-ab-bc-ca >= 0

ta có: a2+b2+c2-ab-bc-ca >= 0 <=> 2a2+2b2+2c2-2ab-2bc-2ca >= 0 <=> (a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) >=0

<=>(a-b)2+(b-c)2+(c-a)>=0

dấu "=" xảy ra khi a=b=c mà a,b,c đôi một khác nhau => a2+b2+c2-ab-bc-ca khác 0 <=> a+b+c=0

28 tháng 6 2015

a^3 + b^3 + c^3 - 3 abc =  ( a + b) ^3 - 3ab( a+b) + c^3 - 3abc

                                   = ( a +b +c )^3 - 3( a+b)^2.c - 3(a+b).c^2 - 3ab ( a+b+c)

                                  = ( a+b + c)^3 - 3(a+b).c (a+ b +c) - 3ab(a+b+c)

                                    = (a+ b+ c) [ (a+ b+ c)^2 - 3(a+b).c - 3ab)] chia hết cho a + b +c

22 tháng 9 2017

a1/2=a2/a3=a3/a4=....=a9/a1=a1+a2+a3+...+a9/a1+a2+a3+...+a9=1                                                                                                   =>a1=a2,a2=a3,...,a9=a1                                                                                                                                                                   =>a1=a2=a3=a4=...=a9                 

16 tháng 4 2018

ten that của pạn là gì

3 tháng 8 2016

Xin lỗi mình nhập bị nhầm. Này là toán 8 ạ

12 tháng 9 2016

1 là 15

2 là 452

3 là 7258

nha nhớ nghe

10 tháng 1 2016

\(a,\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}\)

\(\text{Suy ra: }\frac{a+b}{c+a}=\frac{a}{c}\Rightarrow c.\left(a+b\right)=a.\left(c+a\right)\Rightarrow ac+bc=ac+a^2\)

=>a2=bc

b)Viết đề rõ lại giúp