K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 2 2018

Lời giải:

Đặt biểu thức đã cho là \(A\)

Ta có:

\(6a^2+8ab+11b^2=2a^2+(2a+2b)^2+7b^2\)

Áp dụng BĐT Bunhiacopxky:

\([2a^2+(2a+2b)^2+7b^2](2+4^2+7)\geq (2a+8a+8b+7b)^2\)

\(\Leftrightarrow 25(6a^2+8ab+11b^2)\geq (10a+15b)^2\)

\(\Rightarrow \sqrt{6a^2+8ab+11b^2}\geq 2a+3b\)

\(\Rightarrow \frac{a^2+3ab+b^2}{\sqrt{6a^2+8ab+11b^2}}\leq \frac{a^2+3ab+b^2}{2a+3b}\)

Thực hiện tương tự với các biểu thức còn lại và cộng theo vế:

\(A\leq \frac{a^2+3ab+b^2}{2a+3b}+\frac{a^2+3ac+c^2}{2c+3a}+\frac{b^2+3bc+c^2}{2b+3c}\)

\(6A\leq \frac{3a(2a+3b)+2b(2a+3b)+5ab}{2a+3b}+\frac{3c(2c+3a)+2a(2c+3a)+5ac}{2c+3a}+\frac{3b(2b+3c)+2c(2b+3c)+5bc}{2b+3c}\)

\(\Leftrightarrow 6A\leq 3a+2b+\frac{5ab}{2a+3b}+3c+2a+\frac{5ac}{2c+3a}+3b+2c+\frac{5bc}{2b+3c}\)

\(\Leftrightarrow 6A\leq 5(a+b+c)+5\left(\frac{ab}{2a+3b}+\frac{bc}{2b+3c}+\frac{ac}{2c+3a}\right)\)

Theo hệ quả của BĐT AM-GM:
\((a+b+c)^2\leq 3(a^2+b^2+c^2)=9\Rightarrow a+b+c\leq 3(1)\)

Áp dụng BĐT Cauchy-Schwarz dạng ngược:

\(\frac{ab}{2a+3b}\leq \frac{ab}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}\right)\)

\(\frac{bc}{2b+3c}\leq \frac{bc}{25}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\frac{ca}{2c+3a}\leq \frac{ca}{25}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}+\frac{1}{a}+\frac{1}{a}\right)\)

\(\Rightarrow \frac{ab}{2a+3b}+\frac{bc}{2b+3c}+\frac{ac}{2c+3a}\leq \frac{1}{5}(a+b+c)(2)\)

Từ (1); (2) suy ra:

\(6A\leq 5(a+b+c)+5.\frac{1}{5}(a+b+c)=6(a+b+c)\leq 18\)

\(\Rightarrow A\leq 3\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

26 tháng 3 2017

Câu hỏi của Neet - Toán lớp 9 | Học trực tuyến

17 tháng 12 2018

Áp dụng BĐT Cauchy-Schwarz:

\(VT^2\le\left(a+b+c\right)\left(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\right)\)

Ta đi chứng minh \(\sum\dfrac{a}{4a+3bc}\le\dfrac{1}{2}\). Qui đồng và chuyển vế ta thu được:

\(abc\left[18\left(a^2+b^2+c^2\right)+27abc-32\right]\ge0\) (*)

Xét \(18\sum a^2+27abc-32=9\left(\sum a^2\right)\left(a+b+c\right)+27abc-4\left(a+b+c\right)^3\)

\(=5\sum a^3+3abc-3\sum ab\left(a+b\right)\)

\(=\sum2\left(a+b\right)\left(a-b\right)^2+\left[a^3+b^3+c^3+3abc-\sum ab\left(a+b\right)\right]\ge0\)

Do \(\sum a^3+3abc\ge\sum ab\left(a+b\right)\) ( BĐT Schur Bậc 3)

Do đó (*) luôn đúng.Dấu = xảy ra tại 2 điểm là a=b=c=2/3 hoặc a=0,b=c=1 cùng các hoán vị tương ứng.

6 tháng 4 2017

Bài 1:

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)

Ta sẽ chứng minh nó là GTLN

Thật vậy ta cần chứng minh

\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)

\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)

\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng theo vế ta có:

\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)

Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng

Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)

Bài 3:

Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là

\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:

\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)

Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)

\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)

\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM

Đẳng thức xảy ra khi \(a=b=c=1\)

T/b:Vâng, rất giỏi :GT8:

4 tháng 4 2017

lần sau đăng từng câu 1 dc ko bn :)

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 1:

Ta có:

\(\text{VT}=\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\)

\(=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)

\(=3-2M(*)\)

Áp dụng BĐT Cauchy ta có:

\(M=\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\leq \frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\)

\(\Leftrightarrow M\leq \frac{1}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)

Tiếp tục áp dụng BĐT Cauchy:

\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}=\frac{2(ab+bc+ac)+3}{3}\)

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\) (quen thuộc)

\(\Rightarrow M\leq \frac{1}{3}.\frac{2.3+3}{3}=1(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq 3-2.1=1\)

(đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 2:

Áp dụng BĐT Cauchy -Schwarz:

\(\text{VT}=\frac{a^3}{a^2+a^2b^2}+\frac{b^3}{b^2+b^2c^2}+\frac{c^3}{c^2+a^2c^2}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2}\)

hay:

\(\text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+a^2b^2+b^2c^2+c^2a^2}(*)\)

Mặt khác, theo BĐT Cauchy ta dễ thấy:

\(a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2\)

\(\Rightarrow (a^2+b^2+c^2)^2\geq 3(a^2b^2+b^2c^2+c^2a^2)\)

\(\Leftrightarrow 1\geq 3(a^2b^2+b^2c^2+c^2a^2)\Rightarrow a^2b^2+b^2c^2+c^2a^2\leq \frac{1}{3}(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+\frac{1}{3}}=\frac{3}{4}(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

26 tháng 5 2018

Từ \(a^2+b^2+c^2=3\Rightarrow a+b+c\le3\)

Ta có: \(\sqrt{\dfrac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\dfrac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\dfrac{9}{\left(c+a\right)^2}+b^2}\)

\(\ge\sqrt{9\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\)

\(\ge\sqrt{9\cdot\left(\dfrac{9}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\)

Cần chứng minh \(\sqrt{9\cdot\left(\dfrac{9}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\ge\dfrac{3\sqrt{13}}{2}\)

\(\Leftrightarrow9\left(\dfrac{9}{2t}\right)^2+t^2\ge\dfrac{117}{4}\left(t=a+b+c\le3\right)\)

\(\Leftrightarrow\dfrac{\left(t-3\right)\left(2t-9\right)\left(t+3\right)\left(2t+9\right)}{4t^2}\ge0\)*Đúng*

9 tháng 6 2018

B1:a)ĐK: \(x\ne 0;4;9\)

b)\(P=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\dfrac{1}{\sqrt{x}+1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1+1}{\sqrt{x}+1}\right)\)

\(=\dfrac{x-9-x+4+x^{\dfrac{1}{2}}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{x^{\dfrac{1}{2}}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}+1}{x^{\dfrac{1}{2}}}\)

\(=\dfrac{1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+1}{x^{\dfrac{1}{2}}}\)\(=\dfrac{\sqrt{x}+1}{x-2\sqrt{x}}\)

c)Vì \(x^{\dfrac{1}{2}}+1>0\forall x\) nên

\(P< 0< =>x-2x^{\dfrac{1}{2}}< 0\)

\(\Leftrightarrow x^{\dfrac{1}{2}}\left(x^{\dfrac{1}{2}}-2\right)< 0\)

\(\Leftrightarrow0< x< 4\)

Vậy 0<x<4 thì P<0

d)tA CÓ: \(\dfrac{1}{P}=\dfrac{x-2x^{\dfrac{1}{2}}}{x^{\dfrac{1}{2}}+1}=\dfrac{x-2x^{\dfrac{1}{2}}+1-1}{x^{\dfrac{1}{2}}+1}=\dfrac{\left(x^{\dfrac{1}{2}}-1\right)^2-1}{x^{\dfrac{1}{2}}+1}\ge-1\)

"=" khi x=1

B2:

a)\(A=x^2-2xy+y^2+4x-4y-5\)

\(=\left(x-y\right)^2+4\left(x-y\right)-5\)

\(=\left(x-y\right)^2-1+4\left(x-y\right)-4\)

\(=\left(x-y+1\right)\left(x-y-1\right)+4\left(x-y-1\right)\)

\(=\left(x-y+5\right)\left(x-y-1\right)\)

b)\(P=x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^3+x^2\right)+2\left(x^2+x\right)+1\)

\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)

\(=\left(x^2+x+1\right)^2\ge0\forall x\)

Vậy MinP=0

c)\(Q=x^6+2x^5+2x^4+2x^3+2x^2+2x+1\)

\(=\left(x^2+x-1\right)\left(x^4+x^3+2x^2+x+3\right)+4\)

\(=\left(1-1\right)\left(x^4+x^3+2x^2+x+3\right)+4\)

\(=0\left(x^4+x^3+2x^2+x+3\right)+4=4\)

Vậy x^2+x=1 thì Q=4

B3:a)\(2xy+x+y=83\)

\(\Leftrightarrow x\left(2y+1\right)+\dfrac{1}{2}\left(2y+1\right)=\dfrac{167}{2}\)

\(\Leftrightarrow2x\left(2y+1\right)+1\left(2y+1\right)=167\)

\(\Leftrightarrow\left(2x+1\right)\left(2y+1\right)=167\)

\(Ư\left(167\right)=\left\{\pm1;\pm167\right\}\)

\(\Leftrightarrow\left(x;y\right)=\left(-84;-1\right);\left(-1;-84\right);\left(0;83\right);\left(83;0\right)\)

Vậy...

b)\(y^2+2xy-3x-2=0\)

\(\Leftrightarrow x^2+y^2+2xy-x^2-3x-2=0\)

\(\Leftrightarrow\left(x+y\right)^2=x^2+3x+2\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)

\(x;y\in Z\) nên VT là số chính phương VP là tích 2 số nguyên liên tiếp

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)

Vậy...

B5:\(B=\dfrac{x^2+x+1}{x^2-x+1}\)

\(\Leftrightarrow x^2\left(B-1\right)+x\left(-B-1\right)+\left(B-1\right)=0\)

\(\Delta=\left(-B-1\right)^2-4\left(B-1\right)\left(B-1\right)\)

\(=-\left(B-3\right)\left(3B-1\right)\)

pt có nghiệm khi \(\Delta\ge0\)

\(\Leftrightarrow\left(B-3\right)\left(3B-1\right)\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}B-3\le0\\3B-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}B\le3\\B\ge\dfrac{1}{3}\end{matrix}\right.\)

Min B=1/3 khi x=-1; Max B=3 khi x=1

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 1:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$

$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$

Cộng theo vế và thu gọn:

$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 2:

$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$

$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$

$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$

Cộng theo vế và rút gọn thu được:

$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$ 

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$