K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 1:

Ta có:

\(\text{VT}=\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\)

\(=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)

\(=3-2M(*)\)

Áp dụng BĐT Cauchy ta có:

\(M=\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\leq \frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\)

\(\Leftrightarrow M\leq \frac{1}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)

Tiếp tục áp dụng BĐT Cauchy:

\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}=\frac{2(ab+bc+ac)+3}{3}\)

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\) (quen thuộc)

\(\Rightarrow M\leq \frac{1}{3}.\frac{2.3+3}{3}=1(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq 3-2.1=1\)

(đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 2:

Áp dụng BĐT Cauchy -Schwarz:

\(\text{VT}=\frac{a^3}{a^2+a^2b^2}+\frac{b^3}{b^2+b^2c^2}+\frac{c^3}{c^2+a^2c^2}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2}\)

hay:

\(\text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+a^2b^2+b^2c^2+c^2a^2}(*)\)

Mặt khác, theo BĐT Cauchy ta dễ thấy:

\(a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2\)

\(\Rightarrow (a^2+b^2+c^2)^2\geq 3(a^2b^2+b^2c^2+c^2a^2)\)

\(\Leftrightarrow 1\geq 3(a^2b^2+b^2c^2+c^2a^2)\Rightarrow a^2b^2+b^2c^2+c^2a^2\leq \frac{1}{3}(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+\frac{1}{3}}=\frac{3}{4}(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

NV
8 tháng 2 2021

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)

Ta có:

\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)

\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)

Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)

\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

28 tháng 6 2021

hmmm-khó đấy

 

NV
28 tháng 6 2021

Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn

Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 1:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$

$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$

Cộng theo vế và thu gọn:

$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 2:

$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$

$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$

$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$

Cộng theo vế và rút gọn thu được:

$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$ 

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

4 tháng 12 2017

Đặt vế trái là T, ta có:

\(\dfrac{a}{\sqrt{b+1}}=\dfrac{a\sqrt{2}}{\sqrt{2}.\sqrt{b+1}}\ge\dfrac{a\sqrt{2}}{\dfrac{b+1+2}{2}}=\dfrac{a.2\sqrt{2}}{b+3}\)

Tương tự: \(\dfrac{b}{\sqrt{c+1}}\ge\dfrac{b.2\sqrt{2}}{c+3}\)

\(\dfrac{c}{\sqrt{a+1}}\ge\dfrac{c.2\sqrt{2}}{a+3}\)

Cộng vế theo vế các BĐT vừa chứng minh, ta được

\(T\ge2\sqrt{2}\left(\dfrac{a}{b+3}+\dfrac{b}{c+3}+\dfrac{c}{a+3}\right)=2\sqrt{2}\left(\dfrac{a^2}{ab+3a}+\dfrac{b^2}{bc+3b}+\dfrac{c^2}{ac+3c}\right)\)

\(T\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+3\left(a+b+c\right)}\)

\(T\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{\dfrac{\left(a+b+c\right)^2}{3}+3\left(a+b+c\right)}\)

\(T\ge2\sqrt{2}.\dfrac{3^2}{\dfrac{3^2}{3}+9}=\dfrac{3\sqrt{2}}{2}\)(đpcm)

Đẳng thức xảy ra khi a=b=c=1

4 tháng 12 2017

b) Đặt vế trái là N,ta có:

\(\sum\sqrt{\dfrac{a^3}{b+3}}=\sum\sqrt{\dfrac{a^4}{ab+3}}=\sum\dfrac{a^2}{\sqrt{ab+3}}=\sum\dfrac{2a^2}{\sqrt{4a\left(b+3\right)}}\ge\sum\dfrac{2a^2}{\dfrac{4a+b+3}{2}}=\sum\dfrac{4a^2}{4a+b+3}\)

\(\sum\dfrac{4a^2}{4a+b+3}\ge\dfrac{\left(2a+2b+2c\right)^2}{4a+b+3+4b+c+3+4c+a+3}=\dfrac{3}{2}\)(đpcm)

Đẳng thức xảy ra khi a=b=c=1

2 tháng 1 2022

Ta có \(a^2+\dfrac{1}{b+c}=a^2+\dfrac{1}{6-a}\)

Mà \(a+b+c=6\Rightarrow0\le a,b,c\le2\)

\(\Rightarrow a^2+\dfrac{1}{6-a}\ge2^2+\dfrac{1}{6-2}=\dfrac{17}{4}\)

\(\Rightarrow P=\sum\sqrt{a^2+\dfrac{1}{b+c}}=\sum\sqrt{a^2+\dfrac{1}{6-a}}\ge\sqrt{\dfrac{17}{4}}+\sqrt{\dfrac{17}{4}}+\sqrt{\dfrac{17}{4}}=\dfrac{3\sqrt{17}}{2}\)

Dấu \("="\Leftrightarrow a=b=c=2\)

2 tháng 1 2022

a + b + c >= 6 chứ có phải a + b + c = 6 đâu ạ?

Cho a,b,c là 3 số thức dương thỏa mãn a + b + c = 1/a + 1/b + 1/c . CMR 2( a + b + c) \(\ge\) \(\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\) Giải: Dễ thấy bđt cần cm tương đương với mỗi bđt trong dãy...
Đọc tiếp

Cho a,b,c là 3 số thức dương thỏa mãn a + b + c = 1/a + 1/b + 1/c . CMR

2( a + b + c) \(\ge\) \(\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\)

Giải:

Dễ thấy bđt cần cm tương đương với mỗi bđt trong dãy sau:

\(\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\ge0\),

\(\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\),

\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge0\)

Các bđt trên đầu mang tính đối xứng giữa các biến nên k mất tính tổng quát ta có thể giả sử \(a\ge b\ge c\)

=> \(\dfrac{a^2-1}{a}\ge\dfrac{b^2-1}{b}\ge\dfrac{c^2-1}{c}\)

\(\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{c^2}}}\)

Áp dụng bđt Chebyshev có:

\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge\dfrac{1}{3}\left(\sum\dfrac{a^2-1}{a}\right)\left(\sum\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\right)\)

Theo gia thiết lại có: \(\sum\dfrac{a^2-1}{a}=\left(a+b+c\right)-\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)

nên ta có thể suy ra \(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge0\)

Vì vậy bđt đã cho ban đầu cũng đúng.

@Ace Legona

2
2 tháng 8 2017

Nice proof, nhưng đã quy đồng là phải thế này :v

\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)

\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)

\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)

\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)

2 tháng 8 2017

Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:

\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)

Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)

Áp dụng BĐT này ta có:

\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$

$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 2: 

Áp dụng BĐT Bunhiacopxky:

$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$

$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$

$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$

$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>

 

2 tháng 4 2022

Dễ dàng c/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)

Ta có : \(\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\dfrac{1}{a+b+4}\le\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}\right)\) 

Suy ra : \(\Sigma\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le2.\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)=\dfrac{1}{2}.1=\dfrac{1}{2}\) 

" = " \(\Leftrightarrow a=b=c=1\)

2 tháng 4 2022

 Dạ em cám ơn nhiều lắm ạ

 

12 tháng 5 2017

Do 1/b+1/c=3/4-1/a suy ra \(\sum\) (1a/)=3/4

Ta có \(\dfrac{\sqrt{b^2+bc+c^2}}{a^2}\)= \(\dfrac{\sqrt{\left(b+c\right)^2-bc}}{a^2}\ge\dfrac{\sqrt{\left(b+c\right)^2-\dfrac{\left(b+c\right)^2}{4}}}{a^2}=\dfrac{\sqrt{3}\left(b+c\right)}{2a^2}\)

Tương tự ta được:

P\(\ge\) \(\sqrt{3}\) \(\left(\sum\dfrac{b+c}{a^2}\right)\) \(\ge\) \(\sqrt{3}\) (1/a+1/b+1/c) \(\ge\dfrac{3\sqrt{3}}{4}\)

Đẳng thức xảy ra \(\Leftrightarrow\) a=b=c=4