K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Mai Hương - Toán lớp 9 | Học trực tuyến

21 tháng 4 2015

chữ xấu thế em, anh không nhìn thấy

20 tháng 6 2020

\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge1\)

<=> \(\left(1+b\right)^2\left(1+c\right)^2+\left(1+a\right)^2\left(1+b\right)^2+\left(1+a\right)\left(1+c\right)^2\)

\(+2\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2\)

<=> \(a^2+b^2+c^2\ge3\)đúng vì \(a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

23 tháng 2 2022

Vì \(abc=1\)nên trong 3 số a,b,c luôn có 2 số nằm cùng phía so với 1.

Không mất tính tổng quát ta giả sử 2 số đó là a và b, khi đó ta có:

\(\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow a+b\le1+ab=\frac{c+1}{c}\)

Do đó ta được:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(1+a+b+ab\right)\left(c+1\right)\)

\(=2\left(1+ab\right)\left(1+c\right)\le\frac{2\left(c+1\right)^2}{c}\)

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}\ge\frac{1}{\left(1+ab\right)\left(1+\frac{a}{b}\right)}+\frac{1}{\left(1+ab\right)\left(1+\frac{b}{a}\right)}\)

\(=\frac{b}{\left(1+ab\right)\left(a+b\right)}+\frac{a}{\left(1+ab\right)\left(a+b\right)}=\frac{1}{1+ab}=\frac{c}{c+1}\)

Do đó ta được:

\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+c\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\ge\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}+\frac{c}{\left(c+1\right)^2}=\frac{c\left(c+1\right)+1+c}{\left(c+1\right)^2}=1\)

Như vậy bất đẳng thức ban đầu được chứng minh. Đẳng thức xẩy ra khi \(a=b=c=1\).

1 tháng 9 2019

làm bừa thôi :) 

Do abc=1 nên ta có thể đặt \(\left(a;b;c\right)=\left(\frac{yz}{x^2};\frac{zx}{y^2};\frac{xy}{z^2}\right)\) ( trong đó \(x^2\ne yz;y^2\ne zx;z^2\ne xy\) ) 

\(VT=sigma\left(\frac{a}{a-1}\right)^2=sigma\left(\frac{yz}{yz-x^2}\right)^2=sigma\left(\frac{x^2}{yz-x^2}+1\right)^2\)

\(\ge\frac{\left(\frac{x^2}{yz-x^2}+\frac{y^2}{zx-y^2}+\frac{z^2}{xy-z^2}+3\right)^2}{3}\ge\frac{9}{3}=3>1\)

5 tháng 9 2019

\(\left(\frac{a}{a-1};\frac{b}{b-1};\frac{c}{c-1}\right)\rightarrow\left(x;y;z\right)\)

\(\Rightarrow\)\(a=\frac{x}{x-1};b=\frac{y}{y-1};c=\frac{z}{z-1}\)\(\Rightarrow\)\(xyz=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

\(\Leftrightarrow\)\(xy+yz+zx=x+y+z-1\)

\(\Rightarrow\)\(\left(\frac{a}{a-1}\right)^2+\left(\frac{b}{b-1}\right)^2+\left(\frac{c}{c-1}\right)^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)

\(=\left(x+y+z\right)^2-2\left(x+y+z-1\right)=\left(x+y+z-1\right)^2+1\ge1\)

Dấu "=" xảy ra khi \(abc=\frac{a}{a-1}+\frac{b}{b-1}+\frac{c}{c-1}=1\) ( quy đồng ra ko biết có đc j ko, bn tự làm nhé ) 

3 tháng 2 2021

bânnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

NV
23 tháng 8 2021

Chính bài của em:

Cho \(a,b,c\ge1\). CMR: \(a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)+2\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}... - Hoc24

24 tháng 8 2021

Dạ xin lỗi thầy em ko để ý bucminh

26 tháng 6 2021

do \(a,b,c\ge1\)\(=>\left\{{}\begin{matrix}b+c\ge2\\c+a\ge2\\a+b\ge2\end{matrix}\right.\)

\(=>\left\{{}\begin{matrix}a\left(b+c\right)\ge2a\\b\left(c+a\right)\ge2b\\c\left(a+b\right)\ge2c\end{matrix}\right.\)

\(=>\) biểu thức đề bài cho\(\ge2\left(a+b+c+\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\right)\)

\(2\left(1+1+1+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\right)=9\)

dấu= xảy ra<=>a=b=c=1

 

Ngược dấu rồi bạn ơi =)))