Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
=> bc+ac+ab=0
ta có
\(bc+ac=-ab\)
<=> \(\left(bc+ac\right)^2=a^2b^2\)
<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)
<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)
tương tự
\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)
\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)
thay vào E ta đc
\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)
=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
Áp dụng bđt cô si ta có:
\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(b^2+2c^2+3\ge2\left(bc+c+1\right)\)
\(c^2+2a^2+3\ge2\left(ac+a+1\right)\)
=> \(M\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{bcab+abc+ab}+\frac{b}{abc+ab+b}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)\)
\(=\frac{1}{2}.\frac{ab+b+1}{ab+b+1}=\frac{1}{2}\)
Bổ sung:
Dấu "=" xảy ra <=> a = b = c = 1
Vậy GTLN của M = 1/2 tại a = b = c = 1.
Ta có: \(a^2+b^2\ge2ab;b^2+1\ge2b\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^3+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\)
Tương tự ta cũng có:
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\)\(\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+a+1}\right)\)
Mà: \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{1}{ab+b+1}+\)\(\frac{ab}{ab^2+abc+ab}+\frac{b}{bca+ab+b}=1\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\left(đpcm\right)\)\(\Leftrightarrow a=b=c=1\)
Đề sao rồi bạn ơi, phải là \(\le\) mới đúng. Bài này ta làm như sau:
Áp dụng BĐT Cauchy, ta có:
\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
CMTT, ta được:
\(b^2+2c^2+3\ge2\left(bc+c+1\right)\)
\(c^2+2a^2+3\ge2\left(ca+a+1\right)\)
Do đó ta có:
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\left(1\right)\)
Chú ý rằng \(abc=1\) nên ta dễ dàng CM được:
\(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có đpcm.
Nếu không cho abc=1; a,b,c >0 và BĐT >=1 thì mình xong lâu rồi. Khó phết
Ta có :\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\)\(>=2ab+2b+2=2\left(ab+b+1\right)\)
tương tự ta được \(b^2+2c^2+3>=2\left(bc+c+1\right)\)
\(c^2+2a^2+3>=2\left(ac+a+1\right)\)
theo đề bài abc=1
=> \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\)=\(\frac{1}{ab+b+1}+\frac{ab}{b+ab+1}+\frac{b}{ab+b+1}\)=1
=> VT<=1/2
Dấu bằng khi a=b=c=1
Ta có :$a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2$a2+2b2+3=(a2+b2)+(b2+1)+2$>=2ab+2b+2=2\left(ab+b+1\right)$>=2ab+2b+2=2(ab+b+1)
tương tự ta được $b^2+2c^2+3>=2\left(bc+c+1\right)$b2+2c2+3>=2(bc+c+1)
$c^2+2a^2+3>=2\left(ac+a+1\right)$c2+2a2+3>=2(ac+a+1)
theo đề bài abc=1
=> $\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}$1ab+b+1 +1bc+c+1 +1ca+a+1 =$\frac{1}{ab+b+1}+\frac{ab}{b+ab+1}+\frac{b}{ab+b+1}$1ab+b+1 +abb+ab+1 +bab+b+1 =1
=> VT<=1/2
Dấu bằng khi a=b=c=1
Hình như sai đề :
Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=0\)
\(\Leftrightarrow\dfrac{ab+ac+bc}{abc}=0\)
\(\Leftrightarrow ab+ac+bc=0\) ( do \(a;b;c\ne0\) ) ( 1 )
Từ ( 1 ) \(\Rightarrow ab+bc=-ac\)
\(\Rightarrow\left(ab+bc\right)^2=\left[-\left(ac\right)\right]^2\)
\(\Rightarrow a^2b^2+b^2c^2+2ab^2c=a^2c^2\) ( * )
CMTT , ta được : \(\left\{{}\begin{matrix}b^2c^2+c^2a^2+2bc^2a=a^2b^2\\c^2a^2+a^2b^2+2a^2cb=b^2c^2\end{matrix}\right.\) ( *' )
Thay ( * ) và ( * ') vào E , ta được :
\(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-\left(a^2b^2+b^2c^2+2b^2ac\right)}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-\left(b^2c^2+c^2a^2+2bc^2a\right)}\)
\(+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-\left(c^2a^2+a^2b^2+2a^2cb\right)}\)
\(=\dfrac{a^2b^2c^2}{-2b^2ac}+\dfrac{a^2b^2c^2}{-2c^2ab}+\dfrac{a^2b^2c^2}{-2a^2cb}\)
\(=\dfrac{-ac}{2}+\dfrac{-ab}{2}+\dfrac{-bc}{2}\)
\(=\dfrac{-\left(ac+ab+bc\right)}{2}\)
\(=\dfrac{0}{2}=0\)
Vậy \(E=0\)
Áp dụng bất đẳng thức \(AM-GM\) cho từng cặp số không âm, ta có:
\(a^2+b^2\ge2ab\) \(\left(1\right)\)
\(b^2+1\ge2b\) \(\left(2\right)\)
Cộng \(\left(1\right)\) và \(\left(2\right)\) vế theo vế, ta được:
\(a^2+2b^2+1\ge2ab+2b\)
\(\Rightarrow\) \(a^2+2b^2+3\ge2ab+2b+2\)
Vì hai vế của bất đẳng thức trên cùng dấu (do \(a,b,c>0\)) nên ta nghịch đảo hai vế và đổi chiều bất đẳng thức:
\(\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}\) \(\left(1\right)\)
Hoàn toàn tương tự với vòng hoán vị \(b\) \(\rightarrow\) \(c\) \(\rightarrow\) \(a\) \(\rightarrow\) \(b\), ta có:
\(\frac{1}{b^2+2c^2+3}\ge\frac{1}{2bc+2c+2}\) \(\left(2\right)\) và \(\frac{1}{c^2+2a^2+3}\ge\frac{1}{2ca+2a+2}\) \(\left(3\right)\)
Cộng từng vế \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\), ta được:
\(VT\le\frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+2}+\frac{1}{2ca+2a+2}=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\) \(\left(\text{*}\right)\)
Mặt khác, xét từng phân thức \(\frac{1}{ab+b+1};\frac{1}{bc+c+1};\frac{1}{ca+a+1}\) kết hợp với giả thiết đã cho, nghĩa là \(abc=1,\) ta có:
\(\frac{1}{ab+b+1};\) \(\frac{1}{bc+c+1}=\frac{abc}{bc+c+abc}=\frac{ab}{ab+b+1}\) và \(\frac{1}{ca+a+1}=\frac{abc}{ca+a+abc}=\frac{bc}{bc+c+1}=\frac{bc}{bc+c+abc}=\frac{b}{ab+b+1}\)
Do đó, \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}=1\) \(\left(\text{**}\right)\)
Từ \(\left(\text{*}\right)\) và \(\left(\text{**}\right)\) suy ra \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c\)
+) chứng minh 1/ab+b+1 + 1/bc+c+1 + 1/ac+a+1=1
<=> abc/ab+b+abc + abc/bc+c+abc + 1/ac+a+1
<=> ac/ac+a+1 + ab/b+1+ab + 1/ac+a+1
<=> ac+a+1/ac+a+1
<=> 1
+) xét: a^2+2b^2+3=(a^2+b^2)+(b^2+1)+2 >= 2ab+2b+2<=1/2(ab+b+1) (1)
chứng minh tương tự:1/ b^2+2c^2+3 <= 1/2(bc+c+1) (2)
1/ c^2+2a^2+3 <= 1/2(ac+a+1) (3)
cộng các vế của (1),(2),(3) ta duoc: 1/(a^2+2b^2+3) + 1/(b^2+2c^2+3) + 1/(c62+2a^2+3) <= 1/2.(1/ab+b+1 + 1/bc+c+1 + 1/ac+a+1)=1/2 (đpcm)
mình làm rồi, bạn vào đây tham khảo nha: http://olm.vn/hoi-dap/question/559729.html