Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)
Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Vậy \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
theo đề bài ta có
\(ab\left(c^2+d^2\right)=ab.c^2+ab.d^2=\left(a.c\right).\left(b.c\right)+\left(a.d\right).\left(b.d\right)\\
cd\left(a^2+b^2\right)=cd.a^2+cd.b^2=\left(c.a\right).\left(d.a\right)+\left(c.b\right).\left(d.b\right)\)
\(\left(a.c\right)\left(b.c\right)+\left(a.d\right)\left(b.d\right)=\left(c.a\right)\left(d.a\right)+\left(c.b\right)\left(d.b\right)\) vì mỗi vế đều bằng nhau
- Cnứng minh \(\frac{\left(a^2+b^2\right)}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
ta có vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}=\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a^2+b^2\right)}{\left(c^2+d^2\right)}\)
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)
\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)
Vậy \(\frac{a-b}{b}=\frac{c-d}{d}\)
ta có; a/b = c/d
suy ra a/b - 1=c/d-1
a-b/b=c-d/d(đpcm)
a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}\) = \(\dfrac{3a}{3c}=\dfrac{2b}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}\) (1)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{3a}{3c}=\dfrac{2b}{2d}=\dfrac{3a-2b}{2c-2d}\) (2)
Từ (1) và(2) ta có:
\(\dfrac{2a+5b}{2c+5d}\) = \(\dfrac{3a-2b}{3c-2d}\)(đpcm)
a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}\) ⇒ \(\dfrac{a.b}{c.d}\) = \(\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a.b}{c.d}=\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\) = \(\dfrac{a^2+b^2}{c^2+d^2}\) (đpcm)
Ta có \(\frac{a}{b}=\frac{c}{d}\)
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
b) \(\frac{a}{c}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
c) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)
d) \(\frac{a}{b}=\frac{c}{d}\Rightarrow1:\frac{a}{b}=1:\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow1-\frac{b}{a}=1-\frac{d}{c}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\Rightarrow1:\frac{a-b}{a}=1:\frac{c-d}{c}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt `a/b=c/d =k ->a=bk, c=dk`
`a,`
`(a+b)/b=(bk +b)/b=(b (k+1) )/b=k+1`
`(c+d)/d=(dk +d)/d=(d (k+1) )/d=k+1`
`-> (a+b)/b=(c+d)/d`
`b,`
`a/(a+b)=(bk)/(bk+b)=(bk)/(b(k+1) )=k/(k+1)`
`c/(c+d)=(dk)/(dk+d)=(dk)/(d(k+1) ) = k/(k+1)`
`-> a/(a+b)=c/(c+d)`
`c,`
`(a-b)/b=(bk-b)/b=(b(k-1) )/b=k-1`
`(c-d)/d=(dk-d)/d=(d(k-1) )/d=k-1`
`-> (a-b)/b=(c-d)/d`
`d,`
`a/(a-b) =(bk)/(bk-b)=(bk)/(b(k-1) )=k/(k-1)`
`c/(c-d)=(dk)/(dk-d)=(dk)/(d(k-1) )=k/(k-1)`
`-> a/(a-b)=c/(c-d)`
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Leftrightarrow ac+bc-ad-db=ac-bc+ad-db\)
\(\Leftrightarrow ac-ac+bc+bc=ad+ad+db-db\)
\(\Leftrightarrow2bc=2ad\Leftrightarrow bc=ad\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)(đfcm)
Vì a+b/a-b=c+d/c-d => a+b/c+d=a-b/c-d
Dựa vào tính chất của dãy tỉ số bằng nhau ta có: a+b/c+d=a-b/c-d=a+b+(a-b)/c+d+(c-d)=a+b+a-b/c+d+c-d=2a/2c=a/c (1)
a+b/c+d=a-b/c-d=a+b-(a-b)/c+d-(c-d)=a+b-a+b/c+d-c+d=2b/2d=b/d (2)
Từ (1),(2)suy ra: a/c=b/d