Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}\)
\(=1-\dfrac{\left(ab-1\right)\left(ab+1\right)}{\left(ab+1\right)^2}=1-\dfrac{ab-1}{ab+1}=\dfrac{2}{ab+1}\) (đpcm)
Dấu "=" xảy ra khi \(a=b\)
\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
\(\Rightarrow\left(\dfrac{1}{1+a^2}-\dfrac{1}{1+ab}\right)+\left(\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\right)\ge0\)
\(\Rightarrow\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Rightarrow\dfrac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Rightarrow\dfrac{a\left(b-a\right)\left(1+b^2\right)+b\left(a-b\right)\left(1+a^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Rightarrow\dfrac{\left(b-a\right)\left(a+ab^2\right)-\left(b-a\right)\left(b+a^2b\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Rightarrow\dfrac{\left(b-a\right)\left(-\left(b-a\right)+ab\left(b-a\right)\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Rightarrow\dfrac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\) (luôn đúng vì \(ab\ge1\))
Lời giải:
$P=a^3b^3+1+1+\frac{1}{a^3b^3}$
$=(ab)^3+\frac{1}{(ab)^3}+2$
Áp dụng BĐT Cô-si:
$(ab)^3+\frac{1}{4096(ab)^3}\geq 2\sqrt{(ab)^3.\frac{1}{4096(ab)^3}}=\frac{1}{32}(1)$
$ab\leq \frac{(a+b)^2}{4}=\frac{1}{4}$
$\Rightarrow (ab)^3\leq \frac{1}{64}$
$\Rightarrow \frac{4095}{4096(ab)^3}\geq \frac{4095}{64}(2)$
Từ $(1);(2)$ suy ra:
$P\geq \frac{1}{32}+\frac{4095}{64}+2=\frac{4225}{64}$
Vậy $P_{\min}=\frac{4225}{64}$
Giá trị này đạt tại $a=b=\frac{1}{2}$
\(\dfrac{1}{\left(a+b+a+c\right)^2}\le\dfrac{1}{4\left(a+b\right)\left(a+c\right)}=\dfrac{1}{4\left(a^2+ab+bc+ca\right)}\le\dfrac{1}{64}\left(\dfrac{1}{a^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(\le\dfrac{1}{64}\left(\dfrac{1}{a^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=\dfrac{1}{64}\left(\dfrac{2}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)
Tương tự và cộng lại:
\(P\le\dfrac{1}{64}\left(\dfrac{4}{a^2}+\dfrac{4}{b^2}+\dfrac{4}{c^2}\right)=\dfrac{1}{16}.3=\dfrac{3}{16}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng bđt: \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(1\right)\)
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\)
\(\Rightarrow P\le\dfrac{1}{16}\left[\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)^2+\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)^2+\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)^2\right]\)\(\Rightarrow16P\le\dfrac{2}{\left(a+b\right)^2}+\dfrac{2}{\left(b+c\right)^2}+\dfrac{2}{\left(a+c\right)^2}+\dfrac{2}{\left(a+b\right)\left(b+c\right)}+\dfrac{2}{\left(a+b\right)\left(b+c\right)}+\dfrac{2}{\left(b+c\right)\left(c+a\right)}\)
Áp dụng: \(x^2+y^2+z^2\ge xy+yz+xz\left(2\right)\) với a+b=x,b+c=y,c+a=z
\(\Rightarrow16P\le\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}\)
Ta có: \(\dfrac{1}{\left(a+b\right)^2}\le4.16.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)(do (1))
\(\Rightarrow16P\le\dfrac{1}{4}.16\left[\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\left(\dfrac{1}{b}+\dfrac{1}{c}\right)^2+\left(\dfrac{1}{c}+\dfrac{1}{a}\right)^2\right]=\dfrac{1}{4}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\right)\le\dfrac{1}{4}.4.\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=3\)(do(2) và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\))
\(\Rightarrow P\le\dfrac{3}{16}\)
\(ĐTXR\Leftrightarrow a=b=c=1\)
\(A=\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\left(ab+\dfrac{16}{ab}\right)+\dfrac{17}{2ab}\)
\(A\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{16ab}{ab}}+\dfrac{17}{\dfrac{2\left(a+b\right)^2}{4}}\)
\(A\ge\dfrac{4}{\left(a+b\right)^2}+8+\dfrac{34}{\left(a+b\right)^2}\ge\dfrac{4}{4^2}+8+\dfrac{34}{4^2}=\dfrac{83}{8}\)
Dấu "=" xảy ra khi \(a=b=2\)
\(P=2\Sigma a+\Sigma\dfrac{1}{a}=\Sigma a+\Sigma a+\Sigma\dfrac{1}{a}\ge3.\sqrt[3]{\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}}\)
\(Q=\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}=\left(3+2\Sigma ab\right).\Sigma\dfrac{1}{a}=3\Sigma\dfrac{1}{a}+4\Sigma a+2\Sigma\dfrac{ab}{c}\ge3\Sigma\dfrac{1}{a}+6\Sigma a=3\left(\Sigma\dfrac{1}{a}+2\Sigma a\right)=3P\)\(\Rightarrow\)\(P\ge3\sqrt[3]{3P}\) \(\Leftrightarrow P^3\ge81P\Leftrightarrow P^2\ge81\left(P>0\right)\Leftrightarrow P\ge9\)
" = " \(\Leftrightarrow a=b=c=1\)
Vì $\large a,b,c \in\mathbb{N^*}$ và $\large a^2+b^2+c^2=3\Rightarrow \left\{\begin{matrix} a<\sqrt{3} & \\ b<\sqrt{3} & \\ c<\sqrt{3} & \end{matrix}\right.$
Ta chứng minh bất đẳng thức phụ sau:
Với $0 <x<\sqrt{3}$ thì $2x+\frac{1}{x} \ge x^2.\frac{1}{2}+\frac{5}{2}(*)$
Thật vậy $(*)$ $\large \Leftrightarrow (x-2)(x-1)^2 \le0$
Do $\large x<\sqrt{3}\Leftrightarrow x<2\Leftrightarrow (x-2)(x-1)^2<0$ (Luôn đúng)
Do đó bất đẳng thức được chứng minh
Dấu $"="$ xảy ra khi $x=1$
Trở lại bài toán:
Áp dụng BĐT $(*)$ ta được:
$\large 2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{1}{2}(a^2+b^2+c^2)+\frac{15}{2}=9$
Do $a^2+b^2+c^2=3$
Vậy $GTNN=9$
Dấu $"="$ xảy ra khi: $a=b=c=1$
\(P\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2\)
\(P\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{8}{\left(a+b\right)^2}=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2\left(a+b\right)^2}+\dfrac{15}{2\left(a+b\right)^2}\)
\(P\ge\dfrac{1}{2}.2\sqrt{\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}}+\dfrac{15}{2.1^2}=\dfrac{17}{2}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)