K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

* Trường hợp 1 : 

Nếu a=b 

=> \(\frac{a}{a}\)\(\frac{b}{b}\)= 1 + 1 = 2 ( 1)

* Trường hợp 2 :

  Nếu a < b , đặt b = a+ m

Ta có : M = \(\frac{a}{a+m}\) + \(\frac{a+m}{a}\)\(\frac{a}{a+m}\)\(\frac{m}{a}\)\(\frac{a}{a}\)

                                                           = \(\frac{a}{a+m}\)\(\frac{m}{a}\)+ 1 > \(\frac{a}{a+m}\)\(\frac{m}{a+m}\)+ 1

                                                      => M > \(\frac{a+m}{a+m}\)+ 1

                                                      => M > 1 + 1 

                                                       => M > 2 ( 2) 

* Trường hợp 3 :

Nếu a > b , đặt a = b + n

Ta có : M = \(\frac{b+n}{b}\)\(\frac{b}{b+n}\)\(\frac{b}{b}\)\(\frac{n}{b}\)\(\frac{b}{b+n}\)

                                                        = 1 + \(\frac{n}{b}\)\(\frac{b}{b+n}\)> 1 + \(\frac{n}{b+n}\)\(\frac{b}{b+n}\)

                                                       => M > 1 + \(\frac{n+b}{b+n}\)

                                                        => M > 1+1

                                                        => M > 2 (3)

Từ (1) ; (2) ; (3) 

=> M \(\ge\)

Vậy M \(\ge\)2

7 tháng 2 2017

a vừa là ước vừa là bội của b thì chắc chắn |a | = b hay a = b hoặc a = -b
có thể chứng minh đơn giản như sau: giả sử a= bx và b=ay ( với x ; y là 2 số nguyên)
thế b = ay vào a = bx ta được: a = axy => xy=1 vì x và y nguyên nên
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a = b hoặc a = -b

28 tháng 2 2020

a vừa là ước vừa là bội của b thì

=>  |a | = b hay a = b hoặc a = -b
+  giả sử a= bx và b=ay ( với x ; y là 2 số nguyên)
thế b = ay vào a = bx ta được: a = axy

=> xy=1 vì x và y nguyên nên
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a = b hoặc a = -b

12 tháng 2 2016

a=b

a:b=a:a=1

b:a=b:b=1

 

a=-b

a:b=(-b):b=-1

b:a=b:(-b)=-1

 

12 tháng 2 2016

Vì a là bội của b => a=b.k     ( \(k\in N\)*)

b là bội của a \(\Rightarrow b=ah=b.k.h\)        (\(h\in N\)*)

TH1: k=0, h=0

-> b=a=-b

Th2: k khác 0, h khác 0 thì chỉ có thể là k=1;h=1 hoặc k=-1; h=-1