K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2018

Ý bạn là aa+bb+cc=a2+b2+c2
Ta có:
(a+b+c)2=25
<=> a2+b2+c2+2(ab+bc+ca)=25
<=> a2+b2+c2+2.3=25
<=> a2+b2+c2=19

4 tháng 6 2018

cảm ơn bạn nha

12 tháng 3 2017

mình 0 bt nhng ai chat nhìu thì kt bn với mình nha

13 tháng 3 2017

c)Vẽ Cx CC’. Gọi D là điểm đối xứng của A qua Cx                       

-Chứng minh được góc  BAD vuông, CD = AC, AD = 2CC’                 

 ta có: BD BC + CD                                            

-BAD vuông tại A nên: AB2+AD2 = BD2                                                 

     AB+ AD2 >=   (BC+CD)2                                                                

        AB+ 4CC’2 >= (BC+AC)2

                  4CC’2  >=(BC+AC)– AB2                                                                     

Tương tự:  4AA’2 >= (AB+AC)– BC2

                  4BB’2   (AB+BC)– AC                                                     

 4(AA’+ BB’+ CC’2)>=  (AB+BC+AC)2                                                                    

                              

19 tháng 4 2019

A B C A' B' C' H I M N

a) Ta có : \(\frac{HA'}{AA'}=\frac{S_{HA'C}}{S_{AA'C}}=\frac{S_{BHA'}}{S_{AA'B}}=\frac{S_{HA'C}+S_{BHA'}}{S_{AA'B}+S_{AA'C}}=\frac{S_{BHC}}{S_{ABC}}\)

Tương tự : \(\frac{HB'}{BB'}=\frac{S_{AHC}}{S_{ABC}};\frac{HC'}{CC'}=\frac{S_{AHB}}{S_{ABC}}\)

\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)

b) Ta có : \(\frac{AN}{BN}=\frac{AI}{BI}\)

mà \(\frac{AI}{CI}=\frac{AM}{BM}\Rightarrow AI=\frac{AM}{CM}.CI\)

\(\Rightarrow\frac{AN}{BN}=\frac{AM}{CM}.\frac{CI}{BI}\Rightarrow AN.CM.BI=BN.AM.CI\)

19 tháng 4 2019

A B C A' H I I x D

vẽ Cx \(\perp\)CC' ; vẽ D đối xứng với A qua Cx ; DA  giao điểm Cx tại I

\(\Rightarrow\)CD = AC và tam giác C'CIA là hình chữ nhật

\(\Rightarrow\)CC' = AI = ID ; \(\widehat{BAD}=90^o\)

Ta có BD \(\le\)BC + CD . Dấu " = " xảy ra \(\Leftrightarrow\)\(\Delta BAD\)vuông tại A \(\Rightarrow\)AC = BC

\(\Rightarrow\)BD2 \(\le\)( BC + CD )2 

\(\Delta BAD\)vuông tại A \(\Rightarrow\)BD2 = AB2 + AD2

\(\Rightarrow\)AB2 + AD2 \(\le\)( BC + AC )2 

\(\Rightarrow\)AD2 \(\le\)( BC + AC )2 - AB2

\(\Rightarrow\)4CC'2 \(\le\)( BC + AC )2 - AB2   . Dấu " = " xảy ra \(\Leftrightarrow\)AC = BC

tương tự , 4BB'2 \(\le\) ( AB + BC )2 - AC2    Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC

4AA'2 \(\le\)( AB + AC )2 - BC2   Dấu " = " xảy ra \(\Leftrightarrow\)AB = AC

Suy ra : \(4\left(AA'^2+BB'^2+CC'^2\right)\le\left(AB+BC+AC\right)^2\)

\(\Rightarrow\)\(\frac{\left(AB+BC+AC\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)

Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC = AC hay tam giác ABC đều

 
12 tháng 1 2021

Đây là định lý Ceva nhé bạn!

Giả sử AA', BB', CC' đồng quy tại O.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{A'B}{A'C}=\dfrac{S_{OA'B}}{S_{OA'C}}=\dfrac{S_{AA'B}}{S_{AA'C}}=\dfrac{S_{AA'B}-S_{OA'B}}{S_{AA'C}-S_{OA'C}}=\dfrac{S_{OAB}}{S_{OAC}}\).

Chứng minh tương tự: \(\dfrac{B'C}{B'A}=\dfrac{S_{OBC}}{S_{OBA}};\dfrac{C'A}{C'B}=\dfrac{S_{OAC}}{S_{OBC}}\).

Nhân vế với vế của các đẳng thức trên ta có đpcm.

P/s: Ngoài ra còn có các cách khác như dùng định lý Thales,..)

24 tháng 1 2017

a, dễ c/m SHBC/SABC=HA'/AA' 

               SHAB/SABC=HC'/BB'

              SHAC/SABC=HB'/BB'

Cộng theo vế các đẳg thức trên ,ta có đpcm

b, Áp dụng t/c đg phân giác vào các tam giác ABC,ABI,AIC ta có :

BI/IC=AB/AC , AN/NB=AI/BI,  CM/MA=IC/AI

nhân từng vế rồi rút gọn BI/IC.AN/NB.CM/MA=1 => AN.NI.CM=BN.IC.AM 

24 tháng 1 2017

c, mk ko làm đc, bn có thể nhờ ng khác