K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2021

ab=1

⇒ \(a=\dfrac{1}{b}\)

⇒ \(a^2=\dfrac{1}{b^2}\)

Thay vào P:

\(P=\dfrac{1}{\dfrac{1}{b^2}}+\dfrac{1}{b^2}+\dfrac{2}{\dfrac{1}{b^2}+b^2}\)

   \(=\left(b^2+\dfrac{1}{b^2}\right)+\dfrac{2}{b^2+\dfrac{1}{b^2}}\)

Áp dụng BĐT Cô Si cho 2 số dương

⇒ \(P\) ≥ \(2\sqrt{\left(b^2+\dfrac{1}{b^2}\right).\dfrac{2}{b^2+\dfrac{1}{b^2}}}\)

       \(=2\sqrt{2}\)

Min P= \(2\sqrt{2}\) ⇔ \(b^2=\dfrac{1}{b^2}\) ⇔b=1

 

AH
Akai Haruma
Giáo viên
14 tháng 1 2023

Lời giải:
\(P=\frac{3}{ab+bc+ac}+\frac{5}{(a+b+c)^2-2(ab+bc+ac)}=\frac{3}{ab+bc+ac}+\frac{5}{1-2(ab+bc+ac)}\)

\(=\frac{3}{x}+\frac{5}{1-2x}\) với $x=ab+bc+ac$

Theo BĐT AM-GM:
$1=(a+b+c)^2\geq 3(ab+bc+ac)$

$\Rightarrow x=ab+bc+ac\leq \frac{1}{3}$

Vậy ta cần tìm min $P=\frac{3}{x}+\frac{5}{1-2x}$ với $0< x\leq \frac{1}{3}$

Áp dụng BĐT Bunhiacopxky:

$(\frac{3}{x}+\frac{5}{1-2x})[2x+(1-2x)]\geq (\sqrt{6}+\sqrt{5})^2$

$\Leftrightarrow P\geq (\sqrt{6}+\sqrt{5})^2=11+2\sqrt{30}$

Vậy $P_{\min}=11+2\sqrt{30}$

Giá trị này đạt tại $x=3-\sqrt{\frac{15}{2}}$

18 tháng 1 2023

Con cảm ơn cô ạ

3 tháng 11 2018

\(A+\dfrac{1}{4}\left(a+b+c\right)+\dfrac{3}{4}=\left(\dfrac{a^2}{b+1}+\dfrac{1}{4}\left(b+1\right)\right)+\left(\dfrac{b^2}{c+1}+\dfrac{1}{4}\left(c+1\right)\right)+\left(\dfrac{c^2}{a+1}+\left(a+1\right)\right)\)\(A+\dfrac{3}{2}\ge a+b+c=3\Rightarrow A\ge\dfrac{3}{2}\)

Dấu "=" xảy ra <=> a = b = c = 1

3 tháng 11 2018

a;b>0 and a+b<=0 ????

28 tháng 5 2023

*Tìm min:

\(P=\dfrac{a}{1-a}+\dfrac{b}{1-b}=\dfrac{1}{1-a}-1+\dfrac{1}{1-b}-1\)

\(\ge\dfrac{4}{\left(1-a\right)+\left(1-b\right)}-2\)

\(=\dfrac{4}{2-\dfrac{1}{2}}-2=\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{4}\). Do đó minP=2/3

*Tìm max: \(a,b\ge0\)

\(P=\dfrac{a}{1-a}+\dfrac{b}{1-b}=\dfrac{a-ab+b-ab}{\left(1-a\right)\left(1-b\right)}\)

\(=\dfrac{\dfrac{1}{2}-2ab}{1-\left(a+b\right)+ab}=\dfrac{\dfrac{1}{2}-2ab}{\dfrac{1}{2}+ab}=\dfrac{\dfrac{3}{2}-2\left(\dfrac{1}{2}+ab\right)}{\dfrac{1}{2}+ab}\)

\(=\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}+ab}-2\le\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}}-2=1\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(0;\dfrac{1}{2}\right),\left(\dfrac{1}{2};0\right)\)

Vậy maxP=1

18 tháng 11 2018

\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\ge\dfrac{4}{a^2+2ab+b^2}+\dfrac{1}{\dfrac{\left(a+b\right)^2}{2}}=\dfrac{4}{\left(a+b\right)^2}+\dfrac{1}{\dfrac{1}{2}}=6\)

Dấu "=" xảy ra <=> a = b = \(\dfrac{1}{2}\)

NV
9 tháng 3 2023

\(\left(a+b\right)^2\ge4ab=4\Rightarrow a+b\ge2\)

\(P=\dfrac{a^4}{a+ab}+\dfrac{b^4}{b+ab}\ge\dfrac{\left(a^2+b^2\right)^2}{a+b+2ab}=\dfrac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{a+b+2}\)

\(\ge\dfrac{\dfrac{1}{2}\left(a+b\right)^2.2ab}{a+b+2}=\dfrac{\left(a+b\right)^2}{a+b+2}=\dfrac{\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a+b\right)^2}{a+b+2}\)

\(\ge\dfrac{\dfrac{1}{4}\left(a+b\right)^2+3ab}{a+b+2}=\dfrac{\dfrac{1}{4}\left(a+b\right)^2+1+2}{a+b+2}\)

\(\ge\dfrac{2\sqrt{\dfrac{1}{4}\left(a+b\right)^2.1}+2}{a+b+2}=\dfrac{a+b+2}{a+b+2}=1\)

Dấu = xảy ra khi \(a=b=1\)

9 tháng 12 2021

\(1,Q=\dfrac{a^4-2a^2+a^3-2a+a^2-2}{a^4-2a^2+2a^3-4a+a^2-2}\\ Q=\dfrac{\left(a^2-2\right)\left(a^2+a+1\right)}{\left(a^2-2\right)\left(a^2+2a+1\right)}=\dfrac{a^2+a+1}{a^2+2a+1}\)

\(Q=\dfrac{x^2+x+1}{\left(x+1\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{x^2+x+1-\dfrac{3}{4}x^2-\dfrac{3}{2}x-\dfrac{3}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}\\ Q=\dfrac{\dfrac{1}{4}x^2-\dfrac{1}{2}x+\dfrac{1}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}=\dfrac{\dfrac{1}{4}\left(x-1\right)^2}{\left(x+1\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\\ Q_{min}=\dfrac{3}{4}\Leftrightarrow x=1\)

9 tháng 12 2021

\(2,\text{Từ GT }\Leftrightarrow\dfrac{ayz+bxz+czy}{xyz}=0\\ \Leftrightarrow ayz+bxz+czy=0\\ \text{Ta có }\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\\ \Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ca}\right)=0\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{cxy+ayz+bzx}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{0}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)

NV
7 tháng 3 2022

\(\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{1}{2}ab\)

Tương tự: \(\dfrac{b}{1+c^2}\ge b-\dfrac{1}{2}bc\) ; \(\dfrac{c}{1+a^2}\ge c-\dfrac{1}{2}ca\)

Cộng vế:

\(P\ge a+b+c-\dfrac{1}{2}\left(ab+bc+ca\right)\ge a+b+c-\dfrac{1}{6}\left(a+b+c\right)^2=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(a=b=c=1\)