Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(P=\frac{3}{ab+bc+ac}+\frac{5}{(a+b+c)^2-2(ab+bc+ac)}=\frac{3}{ab+bc+ac}+\frac{5}{1-2(ab+bc+ac)}\)
\(=\frac{3}{x}+\frac{5}{1-2x}\) với $x=ab+bc+ac$
Theo BĐT AM-GM:
$1=(a+b+c)^2\geq 3(ab+bc+ac)$
$\Rightarrow x=ab+bc+ac\leq \frac{1}{3}$
Vậy ta cần tìm min $P=\frac{3}{x}+\frac{5}{1-2x}$ với $0< x\leq \frac{1}{3}$
Áp dụng BĐT Bunhiacopxky:
$(\frac{3}{x}+\frac{5}{1-2x})[2x+(1-2x)]\geq (\sqrt{6}+\sqrt{5})^2$
$\Leftrightarrow P\geq (\sqrt{6}+\sqrt{5})^2=11+2\sqrt{30}$
Vậy $P_{\min}=11+2\sqrt{30}$
Giá trị này đạt tại $x=3-\sqrt{\frac{15}{2}}$
ab=1
⇒ \(a=\dfrac{1}{b}\)
⇒ \(a^2=\dfrac{1}{b^2}\)
Thay vào P:
\(P=\dfrac{1}{\dfrac{1}{b^2}}+\dfrac{1}{b^2}+\dfrac{2}{\dfrac{1}{b^2}+b^2}\)
\(=\left(b^2+\dfrac{1}{b^2}\right)+\dfrac{2}{b^2+\dfrac{1}{b^2}}\)
Áp dụng BĐT Cô Si cho 2 số dương
⇒ \(P\) ≥ \(2\sqrt{\left(b^2+\dfrac{1}{b^2}\right).\dfrac{2}{b^2+\dfrac{1}{b^2}}}\)
\(=2\sqrt{2}\)
Min P= \(2\sqrt{2}\) ⇔ \(b^2=\dfrac{1}{b^2}\) ⇔b=1
\(\left(a+b\right)^2\ge4ab=4\Rightarrow a+b\ge2\)
\(P=\dfrac{a^4}{a+ab}+\dfrac{b^4}{b+ab}\ge\dfrac{\left(a^2+b^2\right)^2}{a+b+2ab}=\dfrac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{a+b+2}\)
\(\ge\dfrac{\dfrac{1}{2}\left(a+b\right)^2.2ab}{a+b+2}=\dfrac{\left(a+b\right)^2}{a+b+2}=\dfrac{\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a+b\right)^2}{a+b+2}\)
\(\ge\dfrac{\dfrac{1}{4}\left(a+b\right)^2+3ab}{a+b+2}=\dfrac{\dfrac{1}{4}\left(a+b\right)^2+1+2}{a+b+2}\)
\(\ge\dfrac{2\sqrt{\dfrac{1}{4}\left(a+b\right)^2.1}+2}{a+b+2}=\dfrac{a+b+2}{a+b+2}=1\)
Dấu = xảy ra khi \(a=b=1\)
Giải:
Ta có:
\(\left(a+b+c+d\right)^2=\) \(\left[\left(a+c\right)+\left(b+d\right)\right]^2\)
\(\ge4\left(a+c\right)\left(b+d\right)\) \(=4\left(ab+bc+cd+da\right)\)\(=4\)
\(\Leftrightarrow a+b+c+d\) \(\ge2\left(a,b,c,d>0\right)\)
\(\Rightarrow\dfrac{a^3}{b+c+d}+\dfrac{b+c+d}{8}\) \(+\dfrac{b}{6}+\dfrac{1}{12}\ge\dfrac{2a}{3}\)
Tương tự ta cũng có:
\(\dfrac{b^3}{a+c+d}+\dfrac{a+c+d}{8}+\dfrac{b}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2b}{3}\)
\(\dfrac{c^3}{a+b+d}+\dfrac{a+b+d}{8}+\dfrac{c}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2c}{3}\)
\(\dfrac{d^3}{a+b+c}+\dfrac{a+b+c}{8}+\dfrac{d}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2d}{3}\)
Cộng vế theo vế các BĐT trên ta có:
\(P\ge\dfrac{a+b+c+d}{3}-\dfrac{1}{3}\ge\) \(\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=\dfrac{1}{2}\)
Ta có BĐT: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.3=9\)
\(\Rightarrow a+b+c\ge3\)
Phân tích và áp dụng BĐT AM-GM:
\(\dfrac{1+3a}{1+b^2}=\dfrac{1}{1+b^2}+\dfrac{3a}{1+b^2}=\left(1-\dfrac{b^2}{1+b^2}\right)+\left(3a-\dfrac{3ab^2}{1+b^2}\right)\ge\left(1-\dfrac{b^2}{2b}\right)+\left(3a-\dfrac{3ab^2}{2b}\right)=\left(1-\dfrac{b}{2}\right)+\left(3a-\dfrac{3}{2}ab\right)\)
Tương tự:
\(\dfrac{1+3b}{1+c^2}\ge\left(1-\dfrac{c}{2}\right)+\left(3b-\dfrac{3}{2}bc\right)\)
\(\dfrac{1+3c}{1+a^2}\ge\left(1-\dfrac{a}{2}\right)+\left(3c-\dfrac{3}{2}ca\right)\)
Cộng các vế của các BĐT ta được:
\(P\ge3-\dfrac{1}{2}\left(a+b+c\right)+3\left(a+b+c\right)-\dfrac{3}{2}\left(ab+bc+ca\right)=3+\dfrac{5}{2}\left(a+b+c\right)-\dfrac{3}{2}.3\ge3+\dfrac{5}{2}.3-\dfrac{9}{2}=6\)
\(P=6\Leftrightarrow a=b=c=1\)
Vậy \(P_{min}=6\)
\(\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{1}{2}ab\)
Tương tự: \(\dfrac{b}{1+c^2}\ge b-\dfrac{1}{2}bc\) ; \(\dfrac{c}{1+a^2}\ge c-\dfrac{1}{2}ca\)
Cộng vế:
\(P\ge a+b+c-\dfrac{1}{2}\left(ab+bc+ca\right)\ge a+b+c-\dfrac{1}{6}\left(a+b+c\right)^2=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(a=b=c=1\)
\(A+\dfrac{1}{4}\left(a+b+c\right)+\dfrac{3}{4}=\left(\dfrac{a^2}{b+1}+\dfrac{1}{4}\left(b+1\right)\right)+\left(\dfrac{b^2}{c+1}+\dfrac{1}{4}\left(c+1\right)\right)+\left(\dfrac{c^2}{a+1}+\left(a+1\right)\right)\)\(A+\dfrac{3}{2}\ge a+b+c=3\Rightarrow A\ge\dfrac{3}{2}\)
Dấu "=" xảy ra <=> a = b = c = 1
a;b>0 and a+b<=0 ????