Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4+4^2+4^3+...+4^{23}+4^{24}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)
\(=20+4^3.\left(4+4^2\right)+....+4^{23}.\left(4+4^2\right)\)
\(=1.20+4^3.20+....+4^{23}.20\)
\(=\left(1+4^3+...+4^{23}\right).20\)
\(\Rightarrow A⋮20\)
-------------------------------------------------------------------------
\(A=4+4^2+4^3+....+4^{23}+4^{24}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+....+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=84+4^4.\left(4+4^2+4^3\right)+.....+4^{22}.\left(4+4^2+4^3\right)\)
\(=1.84+4^4.84+....+4^{22}.84\)
\(=\left(1+4^4+...+4^{22}\right).84\)
\(\Rightarrow A⋮84⋮21\)
---------------------------------------------------------------------------
\(A=4+4^2+4^3+......+4^{23}+4^{24}\)\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+\left(4^7+4^8+4^9+4^{10}+4^{11}+4^{12}\right)+...+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)
\(=5460+4^7.\left(4+4^2+4^3+4^4+4^5+4^6\right)+....+4^{19}.\left(4+4^2+4^3+4^4+4^5+4^6\right)\)
\(=1.5460+4^7.5460+...4^{19}.5460\)
\(=\left(1+4^7+...+4^{19}\right).5460\)
\(\Rightarrow A⋮5460⋮420\)
a) A = 4 + 4² + 4³ + ... + 4¹²
= 4.(1 + 4 + 4² + 4³ + ... + 4¹¹) ⋮ 4
Vậy A ⋮ 4
b) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²
= (4 + 4²) + (4³ + 4⁴) + ... + (4¹¹ + 4¹²)
= 4.(1 + 4) + 4³.(1 + 4) + ... + 4¹¹.(1 + 4)
= 4.5 + 4³.5 + ... + 4¹¹.5
= 5.(4 + 4³ + ... + 4¹¹) ⋮ 5
Vậy A ⋮ 5
c) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²
= (4 + 4² + 4³) + (4⁴ + 4⁵ + 4⁶) + ... + (4¹⁰ + 4¹¹ + 4¹²)
= 4.(1 + 4 + 4²) + 4⁴.(1 + 4 + 4²) + ... + 4¹⁰.(1 + 4 + 4²)
= 4.21 + 4⁴.21 + ... + 4¹⁰.21
= 21.(4 + 4⁴ + ... + 4¹⁰) ⋮ 21
Vậy A ⋮ 21
\(A=3+3^2+3^3+3^4+...+3^{50}.\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{49}+3^{50}\right)\)
\(=\left(3\cdot1+3\cdot3\right)+\left(3^3\cdot1+3^3\cdot3\right)+...+\left(3^{49}\cdot1+3^{49}\cdot3\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{49}\left(1+3\right)\)
\(=3\cdot4+3^3\cdot4+...+3^{49}\cdot4\)
\(=4\cdot\left(3+3^3+...+3^{49}\right)⋮4\)
\(\Rightarrow A⋮4\)
Học tốt ^3^
Trả lời:
\(A=3+3^2+3^3+3^4+...+3^{50}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{49}+3^{50}\right)\)
\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{49}.\left(1+3\right)\)
\(A=\left(3+3^3+...+3^{49}\right).4\)
Vì \(3+3^3+...+3^{49}\inℕ\)
Mà \(4⋮4\)
\(\Rightarrow\)\(\left(3+3^3+...+3^{49}\right).4⋮4\)
Hay \(A⋮4\left(đpcm\right)\)
Vậy\(A⋮4\)
Hok tốt!
Vuong Dong Yet
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
Em xem lại đề nhé! Có xuất hiện dấu + không? Hay chỉ là dấu x
Có : A = (4+4^2)+(4^2+4^3)+.....+(4^23+4^24)
= 20+4.(4+4^2)+.....+4^22.(4+4^2)
= 20+4.20+......+4^22.20
= 20.(1+4+.....+4^22) chia hết cho 20 (1)
Lại có : A = (4+4^2)+(4^3+4^4)+.....+(4^23+4^24)
= 4.(1+4)+4^3.(1+4)+......+4^23.(1+4)
= 4.5+4^3.5+....+4^23.5
= 5.(4+4^3+.....+4^23) chia hết cho 5 (2)
A = (4+4^2+4^3)+(4^4+4^5+4^6)+......+(4^22+4^23+4^24)
= 4.(1+4+4^2)+4^4.(1+4+4^2)+......+4^22.(1+4+4^2)
= 4.21+4^4.21+.....+4^22.21
= 21.(4+4^4+.....+4^22) chia hết cho 21 (3)
Từ (1) ; (2) và (3) => A chia hết cho 4.5.21 = 420 ( vi 4 ; 5 ; 21 là 3 số nguyên tố với nhau từng đôi một )
=> ĐPCM
Tk mk nha