K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2021

a. \(\overrightarrow{BC}=\left(3;-3\right)=3\left(1;-1\right)\)

Phương trình AH đi qua A và vuông góc BC nên nhận \(\left(1;-1\right)\) là vtpt có dạng:

\(1\left(x-2\right)-1\left(y-3\right)=0\Leftrightarrow x-y+1=0\)

b. Gọi M là trung điểm BC \(\Rightarrow M\left(-\dfrac{3}{2};\dfrac{7}{2}\right)\Rightarrow\overrightarrow{AM}=\left(-\dfrac{7}{2};\dfrac{1}{2}\right)=-\dfrac{1}{2}\left(7;-1\right)\)

Phương trình AM qua A và nhận \(\left(7;-1\right)\) là vtcp có dạng: \(\left\{{}\begin{matrix}x=2+7t\\y=3-t\end{matrix}\right.\)

c. Đường trung bình song song BC đi qua M và nhận (1;-1) là 1 vtcp có dạng:

\(\left\{{}\begin{matrix}x=-\dfrac{3}{2}+t\\y=\dfrac{7}{2}-t\end{matrix}\right.\)

9 tháng 3 2018

Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10

+ Lập phương trình đường thẳng AB:

Đường thẳng AB nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtcp ⇒ AB nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtpt

Mà A(1; 4) thuộc AB

⇒ PT đường thẳng AB: 5(x- 1) + 2(y – 4) = 0 hay 5x + 2y – 13 = 0.

+ Lập phương trình đường thẳng BC:

Đường thẳng BC nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtcp ⇒ BC nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtpt

Mà B(3; –1) thuộc BC

⇒ Phương trình đường thẳng BC: 1(x - 3) – 1(y + 1) = 0 hay x – y – 4 = 0.

+ Lập phương trình đường thẳng CA:

Đường thẳng CA nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtcp ⇒ CA nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtpt

Mà C(6; 2) thuộc CA

⇒ Phương trình đường thẳng AC: 2(x – 6) + 5(y - 2) = 0 hay 2x + 5y – 22 = 0.

b) + AH là đường cao của tam giác ABC ⇒ AH ⊥ BC

⇒ Đường thẳng AH nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vec tơ pháp tuyến

Mà A(1; 4) thuộc AH

⇒ Phương trình đường thẳng AH: 1(x - 1) + 1(y - 4) = 0 hay x + y – 5 = 0.

+ Trung điểm M của BC có tọa độ Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 hay Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10

Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10

Đường thẳng AM nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtcp

⇒ AM nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtpt

Mà A(1; 4) thuộc AM

⇒ Phương trình đường thẳng AM: 1(x - 1) + 1(y – 4) = 0 hay x + y – 5 = 0.

10 tháng 4 2020
AB:2x-5y+18=0 AC:5x-2y+3=0 BC:x+y-2=0 AH:x-y+3=0 AM:x+y-5=0
16 tháng 5 2020

Đường cao AH là đường thẳng đi qua A(1; 4) và vuông góc với BC.

 = (3; 3)  =>   ⊥  nên  nhận vectơ    = (3; 3) làm vectơ pháp tuyến và có phương trình tổng quát:

AH : 3(x – 1) + 3(y -4) = 0

3x + 3y – 15 = 0

=> x + y – 5 = 0

Gọi M là trung điểm BC ta có M ()

Trung tuyến AM là đường thẳng đi qua hai điểm A, M. Theo các viết phương trình đường thẳng đi qua hai điểm trong câu a) ta viết được:

AM : x + y – 5 = 0

NV
17 tháng 1 2022

\(\overrightarrow{BC}=\left(-3;-1\right)\)

Gọi M là trung điểm AB \(\Rightarrow M\left(2,2\right)\)

Đường trung bình song song BC sẽ đi qua M và nhận \(\overrightarrow{BC}\) là 1 vtcp \(\Rightarrow\) nhận (1,-3) là 1 vtpt

Phương trình:

\(1\left(x-2\right)-3\left(y-2\right)=0\Rightarrow x-3y+4=0\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Ta có: \(\overrightarrow {BC}  = \left( {4;2} \right)\)  \(\Rightarrow VTPT: \overrightarrow {n_{BC}}  = \left( {2; - 4} \right)\)

Phương trình tổng quát của đường thẳng BC đi qua điểm \(B(1;2)\) và nhận vectơ \(\overrightarrow n  = \left( {2; - 4} \right)\) làm VTPT là:

\(2\left( {x - 1} \right) - 4\left( {y - 2} \right) = 0 \Leftrightarrow 2x - 4y + 6 = 0\)

b) M là trung điểm của BC nên ta có tọa độ điểm M là \(M\left( {3;3} \right)\)

Đường thẳng AM đi qua điểm \(A\left( {2;5} \right)\) và nhận vectơ \(\overrightarrow {AM}  = \left( {1; - 2} \right)\) làm vectơ chỉ phương nên ta có phương trình tham số của trung tuyến AM là:

                   \(\left\{ \begin{array}{l}x = 2 + t\\y = 5 - 2t\end{array} \right.\)

c) Ta có: \(AH \bot BC\) nên đường cao AH nhận vectơ \(\overrightarrow {BC}  = \left( {4;2} \right)\) làm vectơ pháp tuyến

Đường thẳng AH đi qua \(A\left( {2;5} \right)\) và nhận vectơ \(\overrightarrow {BC}  = \left( {4;2} \right)\) làm vectơ pháp tuyến, suy ta phương trình tổng quát của đường cao AH là:

          \(4\left( {x - 2} \right) + 2\left( {y - 5} \right) = 0 \Leftrightarrow 4x + 2y - 18 = 0\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a)  Phương trình đường thẳng AB đi qua 2 điểm A và B là: \(\frac{{x - 1}}{{ - 1 - 1}} = \frac{{y - 3}}{{ - 1 - 3}} \Leftrightarrow \frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 4}} \Leftrightarrow 2x - y + 1 = 0\)

 Phương trình đường thẳng AC đi qua 2 điểm A và C là: \(\frac{{x - 1}}{{5 - 1}} = \frac{{y - 3}}{{ - 3 - 3}} \Leftrightarrow \frac{{x - 1}}{4} = \frac{{y - 3}}{{ - 6}} \Leftrightarrow 3x + 2y - 9 = 0\)

 Phương trình đường thẳng BC đi qua 2 điểm B và C là:

\(\frac{{x + 1}}{{5 + 1}} = \frac{{y + 1}}{{ - 3 + 1}} \Leftrightarrow \frac{{x + 1}}{6} = \frac{{y + 1}}{{ - 2}} \Leftrightarrow x + 3y + 4 = 0\)

b)  Gọi d là đường trung trực của cạnh AB.

 Lấy N là trung điểm của AB, suy ra \(N\left( {0;1} \right)\).

 Do \(d \bot AB\) nên ta có vecto pháp tuyến của d là: \(\overrightarrow {{n_d}}  = \left( {1;2} \right)\)

 Vậy phương trình đường thẳng d đi qua N có vecto pháp tuyến \(\overrightarrow {{n_d}}  = \left( {1;2} \right)\) là:

\(1\left( {x - 0} \right) + 2\left( {y - 1} \right) = 0 \Leftrightarrow x + 2y - 2 = 0\)

c)  Do AH vuông góc với BC nên vecto pháp tuyến của AH là \(\overrightarrow {{n_{AH}}}  = \left( {3; - 1} \right)\)

 Vậy phương trình đường cao AH đi qua điểm A có vecto pháp tuyến \(\overrightarrow {{n_{AH}}}  = \left( {3; - 1} \right)\)là: \(3\left( {x - 1} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow 3x - y = 0\)

 Do M là trung điểm BC nên \(M\left( {2; - 2} \right)\). Vậy ta có: \(\overrightarrow {AM}  = \left( {1; - 5} \right) \Rightarrow \overrightarrow {{n_{AM}}}  = \left( {5;1} \right)\)

 Phương trình đường trung tuyến AM đi qua điểm A có vecto pháp tuyến \(\overrightarrow {{n_{AM}}}  = \left( {5;1} \right)\) là:

\(5\left( {x - 1} \right) + 1\left( {y - 3} \right) = 0 \Leftrightarrow 5x + y - 8 = 0\)

NV
2 tháng 4 2020

Đặt \(\left\{{}\begin{matrix}\frac{1}{x+3y-1}=X\\\frac{1}{2x-y+3}=Y\end{matrix}\right.\)

Hệ phương trình trở thành:

\(\left\{{}\begin{matrix}2X-Y=5\\X+2Y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4X-2Y=10\\X+2Y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5X=15\\X+2Y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}X=3\\Y=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x+3y-1}=3\\\frac{1}{2x-y+3}=1\end{matrix}\right.\) (nhân chéo) \(\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=\frac{1}{3}\\2x-y+3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\2x-y=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\6x-3y=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\7x=-\frac{14}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{2}{3}\\y=\frac{2}{3}\end{matrix}\right.\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(-\frac{2}{3};\frac{2}{3}\right)\)