K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 10 2023

Lời giải:
Vì $p$ là snt lớn hơn $3$ nên $p$ không chia hết cho $3$.

TH1: $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$

$p^2+2012=(3k+1)^2+2012=9k^2+6k+2013=3(3k^2+2k+671)\vdots 3$

TH2: $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$

$p^2+2012=(3k+2)^2+2012=9k^2+12k+2016=3(3k^2+4k+672)\vdots 3$

Vậy $p^2+2012$ luôn chia hết cho $3$. Mà $p^2+2012>3$ nên là hợp số.

12 tháng 11 2016

sorry.I don't know

12 tháng 11 2016

a; 19,29,59

b. 889=887+3 (887 nguyen to)

c.2001.2002.2003.2004 co tan cung la 4

vay 2001.2002.2003.2004 +1 co tan cung la 5

vay (c) luon chia het cho 5= hop so

16 tháng 4 2018

ad ơi júp em với vv

30 tháng 10 2017

3 tháng 1 2020

a) Nếu n = 3k+1 thì  n 2 = (3k+1)(3k+1) hay  n 2  = 3k(3k+1)+3k+1

Rõ ràng  n 2  chia cho 3 dư 1

Nếu n = 3k+2 thì  n 2 = (3k+2)(3k+2)  hay  n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên  n 2  chia cho 3 dư 1.

b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2  chia cho 3 dư 1 tức là   p 2 = 3 k + 1  do đó  p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3

Vậy p 2 + 2003  là hợp số

25 tháng 6 2023

a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k+ 2k) + 1 => n2 chia cho 3 dư 1

+) n chia cho 3 dư 2 => n = 3k + 2 => n= (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k+ 4k +1) + 1 => n2 chia cho 3 dư 1

Vậy...

b) p là số nguyên tố > 3 => p lẻ => plẻ => p + 2003 chẵn => p2 + 2003 là hợp số

12 tháng 1 2016

p là số nguyên tố nhỏ hơn 3 => p = 2 

Thay vào p = 2

Ta có 2^2 +2012 

= 4 + 2012

= 2016

mà 2016 là hợp số

Vậy p^2 + 2012 là hợp số

12 tháng 1 2016

p là số nguyên tố nhỏ hơn 3 =>p=2

=>2^2+2012=4+2012=2016 là hợp số

22 tháng 10 2017

Vì p là số nguyên lớn hơn 3

=> p lẻ

=> p2 lẻ

=> p2+2003 chẵn

mà p>3=>p2>3=>p2+200>3

=>P2+2003 là hợp số

Đảm bảo đúng!!!

  
22 tháng 10 2017

Vì p là số nguyên lớn hơn 3

=> p lẻ

=> p2 lẻ

=> p2+2003 chẵn

mà p>3=>p2>3=>p2+200>3

=>P2+2003 là hợp số