Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử P lẻ thì a1-b2;a2-b2;a2003-b2003 lẻ.khi đó, (a1-b1)+(a2-b2)+...+(a2003-b2003) lẻ(vì có 2003 cặp số lẻ) (1)
mà (a1-b1)+(a2-b2)+...+(a2003-b2003)=(a1+a2+...+a2003)-(b1+b2+...+b2003). vì b1;b2;b3;...;b2003 là cách sắp xếp theo thứ tự khác của a1;a2;a3;...;a2003 nên (a1+a2+...+a2003)-(b1+b2+...+b2003)=0(2)
do (1) và(2) mâu thuẫn nên P ko thể là số lẻ, vậy P là số chẵn(đpcm)
tick
Ta có với số nguyên a bất kì:
| a | - a = a - a = 0 là số chẵn nếu a\(\ge\)0
| a | - a = -a - a = -2a là số chẵn nếu a < 0
Tóm lại: | a | - a là số chẵn với a nguyên bất kì
=> | a1 - a2 | - ( a1 - a2) là số chẵn
| a2 - a3 | - ( a2 - a3) là số chẵn
| a3 - a4 | - ( a3 - a4) là số chẵn
....
| an- a1 | - ( an - a1) là số chẵn
=> [ | a1 - a2| + |a2 - a3| + | a3 - a4| +...+ |an - a1| ] - [( a1 - a2) + (a2 - a3) + ( a3 - a4)+...+ (an - a1) ] là số chẵn
mà ( a1 - a2) + (a2 - a3) + ( a3 - a4)+...+ (an - a1) = 0 là số chẵn
=> | a1 - a2| + |a2 - a3| + | a3 - a4| +...+ |an - a1| là số chẵn
Vậy S luôn là 1 số chẵn.
Giả sử 2017 số a1 - b1, a2 - b2,..., a2017 - b2017 là các số lẻ.
Khi đó (a1 - b1) + (a2 - b2) + ... + (a2017 - b2017) = (a1 + a2 + ... + a2017) - (b1 + b2 + ... + b2017) là số lẻ. (1)
Lại có theo đề bài b1, b2,..., b2017 là 1 hoán vị của các số a1, a2,..., a2017 nên (a1 + a2 + ... + a2017) - (b1 + b2 + ... + b2017) = 0. (2)
Ta thấy (1) trái với (2). Do đó giả sử sai.
Suy ra trong 2017 số a1 - b1, a2 - b2,..., a2017 - b2017 có một số chẵn, do đó tích chúng là số chẵn.
Vậy ta có đpcm
Đặng Quốc Huy mk cx chưa pải là thần đồng. Bạn shitbo cx giỏi bằng mk đó, cùng lp vs mk mà
Số tam giác có được là:
\(C^2_3\cdot C^1_4+C^1_3\cdot C^2_4=30\)
1 tam giác có 3 đỉnh ko thẳng hàng.
Theo NL Đi-rích-lê, có 3 điểm, 2 đường thẳng => Có 1 đường thẳng chứa 2 điểm, đường thẳng kia chứa điểm còn lại
Ta chia trường hợp:
*TH1: 2 điểm trên đường thẳng a, 1 điểm trên đường thẳng b
+) Điểm 1 trên a có 3 cách chọn
Điểm 2 trên a có 2 cách chọn
+) Điểm 1 trên b có 1 cách chọn
=> Tạo được 3.2.1 = 6 (tam giác)
*TH2: 1 điểm trên a, 2 điểm trên b
+) Điểm 1 trên a có 1 cách chọn
+) Điểm 1 trên b có 4 cách chọn
Điểm 2 trên b có 3 cách chọn
=> Tạo được 1.3.4 = 12 (tam giác)
Vậy tạo được tất cả 6+12=18 tam giác từ 7 điểm trên.