K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

Giả sử (a1-b1)(a2-b2)....(a7-b7) la số lẻ

=> a1-b1;a2-b2;.....;a7-b7 là số lẻ

=> (a1-b1)+(a2-b2)+....+(a7-b7) là số lẻ

=> (a1+a2+...+a7)-(b1+b2+...+b3) là số lẻ

Mà 

 (a1+a2+...+a7)-(b1+b2+...+b3) =0 vô lí

=> tich do la so chan

 

27 tháng 12 2015

giả sử P lẻ thì a1-b2;a2-b2;a2003-b2003 lẻ.khi đó, (a1-b1)+(a2-b2)+...+(a2003-b2003) lẻ(vì có 2003 cặp số lẻ) (1)

mà (a1-b1)+(a2-b2)+...+(a2003-b2003)=(a1+a2+...+a2003)-(b1+b2+...+b2003). vì b1;b2;b3;...;b2003 là cách sắp xếp theo thứ tự khác của a1;a2;a3;...;a2003 nên (a1+a2+...+a2003)-(b1+b2+...+b2003)=0(2)

do (1) và(2) mâu thuẫn nên P ko thể là số lẻ, vậy P là số chẵn(đpcm)

tick 

25 tháng 3 2020

Ta có với số nguyên a bất kì:

 | a | - a = a - a = 0 là số chẵn nếu  a\(\ge\)0

| a | - a = -a - a = -2a là số chẵn nếu a < 0

Tóm lại: | a | - a là số chẵn với a nguyên bất kì 

=> | a1 - a2 | - ( a1 - a2) là số chẵn

 | a2 - a3 | - ( a2 - a3) là số chẵn

 | a3 - a4 | - ( a3 - a4) là số chẵn

....

 | an- a1 | - ( an - a1) là số chẵn

=> [ | a1 - a2| + |a2 - a3| + | a3 - a4| +...+ |an - a1| ] - [( a1 - a2) + (a2 - a3) + ( a3 - a4)+...+ (an - a1) ] là số chẵn 

mà   ( a1 - a2) + (a2 - a3) + ( a3 - a4)+...+ (an - a1)  = 0 là số chẵn 

=> | a1 - a2| + |a2 - a3| + | a3 - a4| +...+ |an - a1|  là số chẵn 

Vậy S luôn là 1 số chẵn.

    

19 tháng 1 2019

Giả sử 2017 số a1 - b1, a2 - b2,..., a2017 - b2017 là các số lẻ.

Khi đó (a1 - b1) + (a2 - b2) + ... + (a2017 - b2017) = (a1 + a2 + ... + a2017) - (b1 + b2 + ... + b2017) là số lẻ. (1)

Lại có theo đề bài b1, b2,..., b2017 là 1 hoán vị của các số a1, a2,..., a2017 nên (a1 + a2 + ... + a2017) - (b1 + b2 + ... + b2017) = 0. (2)

Ta thấy (1) trái với (2). Do đó giả sử sai.

Suy ra trong 2017 số a1 - b1, a2 - b2,..., a2017 - b2017 có một số chẵn, do đó tích chúng là số chẵn.

Vậy ta có đpcm

20 tháng 1 2019

Đặng Quốc Huy mk cx chưa pải là thần đồng. Bạn shitbo cx giỏi bằng mk đó, cùng lp vs mk mà

Số tam giác có được là:

\(C^2_3\cdot C^1_4+C^1_3\cdot C^2_4=30\)

8 tháng 4 2023

1 tam giác có 3 đỉnh ko thẳng hàng.

Theo NL Đi-rích-lê, có 3 điểm, 2 đường thẳng => Có 1 đường thẳng chứa 2 điểm, đường thẳng kia chứa điểm còn lại

Ta chia trường hợp:

*TH1: 2 điểm trên đường thẳng a, 1 điểm trên đường thẳng b

+) Điểm 1 trên a có 3 cách chọn

Điểm 2 trên a có 2 cách chọn

+) Điểm 1 trên b có 1 cách chọn

=> Tạo được 3.2.1 = 6 (tam giác)
*TH2: 1 điểm trên a, 2 điểm trên b

+) Điểm 1 trên a có 1 cách chọn

+) Điểm 1 trên b có 4 cách chọn

Điểm 2 trên b có 3 cách chọn

=> Tạo được 1.3.4 = 12 (tam giác)

Vậy tạo được tất cả 6+12=18 tam giác từ 7 điểm trên.