K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
31 tháng 12 2022
a: Đặt a/b=b/c=c/d=k
=>a=bk; b=ck; c=dk
=>a=bk; b=dk^2; c=dk
=>a=dk^3; b=dk^2; c=dk
\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\left(\dfrac{dk^3+dk^2+dk}{dk^2+dk+d}\right)^3=k^3\)
\(\dfrac{a}{d}=\dfrac{dk^3}{d}=k^3\)
=>\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
c: Đặt a/2003=b/2004=c/2005=k
=>a=2003k; b=2004k; c=2005k
4(a-b)(b-c)=(c-a)^2
=>4(2004k-2003k)(2005k-2004k)=(2005k-2003k)^2
=>4*k*k=(2k)^2(luôn đúng)
=>ĐPCM
MC
17 tháng 8 2019
1 + 1=
Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ
22 tháng 11 2021
1+1= 2 nha
Em lo học đi, ở đó đừng nói bậy. Nếu em khó khăn thì báo cho nhà trường để giúp nghe
Đặt: \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2008}}{a_{2009}}=t\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2008}}{a_{2009}}=\dfrac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+...+a_{2009}}=t\)
Ta có: \(\left\{{}\begin{matrix}\left(\dfrac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\right)^{2008}=t^{2008}\\\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}...\dfrac{a_{2008}}{a_{2009}}=t^{2008}=\dfrac{a_1}{a_{2009}}\end{matrix}\right.\Leftrightarrow\left(đpcm\right)\)
ai giả đi