Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+...+2^{2020}+2^{2021}+2^{2023}\)
\(A=1+2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2020}\left(1+2+2^2\right)-2^{2022}+2^{2023}\)
\(A=1+2.7+2^4.7+...+2^{2020}.7-2^{2022}+2^{2023}\)
\(A=7\left(2+2^4+...+2^{2020}\right)+\left(2^{2022}+1\right)\left(1\right)\)
Ta có :
\(2^3=8\equiv1\) (mod 7)
\(\Rightarrow\left(2^3\right)^{674}\equiv1^{674}=1\) (mod 7)
\(\Rightarrow2^{2022}\equiv1\) (mod 7)
\(\Rightarrow2^{2022}+1\equiv1+1=2\) (mod 7)
\(\Rightarrow2^{2022}+1\equiv2\) (mod 7)
mà \(7\left(2+2^4+...+2^{2020}\right)⋮7\)
\(\left(1\right)\Rightarrow A=7\left(2+2^4+...+2^{2020}\right)+\left(2^{2022}+1\right)\equiv2\) (mod 7)
Vậy số dư của A khi chia cho 7 là 2
\(x^{2020}=x\Leftrightarrow x^{2020}-x=0\Leftrightarrow x\left(x^{2019}-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(1+2+2^2+2^3+....+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{2016}+2^{2017}+2^{2018}\right)+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+.....+2^{2016}\left(1+2+2^2\right)+2^{2019}+2^{2020}\)
\(A=7+2^3.7+2^6.7+2^9.7+....+2^{2016}.7+2^{2019}+2^{2020}\)
\(\text{Ta có:}2^{2019}+2^{2020}=8^{673}+8^{673}.2\equiv1+1.2\left(\text{mod 7}\right)\equiv3\left(\text{mod 7}\right)\Rightarrow A\text{ chia 7 dư 3}\)
7^1 + 7^2 + ... + 7^2013
= ( 7^1 + 7^2 + 7^3 ) +.... + ( 7^2011 + 7^2012 + 7^2013 )
= 7^1 . ( 1 + 7 + 49 ) + .... + 7^2011( 1+ 7+ 49 )
= 7^1 . 57 + .... + 7^2011 . 57
= 7^1 . 19 . 3 + ... + 7^2011 . 19 .3
=> A chia cho 19 dư 0
Tick nha
\(A=\dfrac{7^{2020^{2019}}-3^{2016^{2015}}}{5}\)
Xét \(X=2020^{2019}\) và \(Y=2016^{2015}\). Khi đó \(A=\dfrac{7^X-3^Y}{5}\).
Vì cơ số của X tận cùng bằng 0 nên 0.0.0...0 luôn tận cùng bằng 0. Suy ra chữ số tận cùng của X là 0.
Ngoài ra, 20202019 sẽ có 2019 chữ số 0 ở sau cùng, suy ra hai chữ số tận cùng của X là những chữ số 0. Suy ra X chia hết cho 4.
Vì cơ số của Y tận cùng bằng 6 nên 6.6.6...6 luôn tận cùng bằng 6. Suy ra chữ số tận cùng của Y là 6.
Dễ dàng nhận thấy rằng 2016 chia hết cho 4, suy ra Y cũng chia hết cho 4 (y ϵ N*).
Do đó \(A=\dfrac{7^X-3^Y}{5}=\dfrac{7^{\overline{...0}}-3^{\overline{...6}}}{5}=\dfrac{7^{4x}-3^{4y}}{5}\)
Ta lập bảng
n | 1 | 2 | 3 | 4 | ... |
Chữ số tận cùng của 7n | 7 | 9 | 3 | 1 | ... |
Chữ số tận cùng của 3n | 3 | 9 | 7 | 1 | ... |
Dãy trên sẽ lặp lại với chu kì là 4 số hạng. Khi đó chữ số tận cùng của 74n; 34n lần lượt giống chữ số tận cùng của 7n; 3n.
Suy ra \(A=\dfrac{\overline{...1}-\overline{...1}}{5}=\dfrac{\overline{...0}}{5}\).
Dễ nhận thấy rằng A chia hết cho 5A chia hết cho 10. Mà 10 = 5.2 nên 5A cũng chia hết cho 2. Lại có 5 không chia hết cho 2 nên chỉ có trường hợp A chia hết cho 2 (đpcm)
1/ So sánh A với \(\frac{1}{4}\)
Có \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.........+\frac{1}{2014.2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-.......+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2015.2016}=\frac{1}{2}-\frac{1}{2015.2016}\)
Vậy \(A>\frac{1}{4}\)
\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\\ \left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\\ \left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\\ 57\left(1+7^3+7^6+...+7^{2018}\right)⋮57\)
A=1+7+72+...+72019+72020
=1+(7+72+73)+(74+75+76)+...+(72018+72019+72020)
=1+7(1+7+72)+74(1+7+72)+...+72018(1+7+72)
=1+7x57+74x57+...+72018x57=1+57(7+74+...+72018)
=>A chia cho 57 dư 1.vì 57(7+74+...+72018)⋮57.