Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C/m nó nhỏ hơn 3/4 hả bạn ?
Có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{3}{4}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)(ĐPCM)
A=1+3+3^2+3^3+3^4+3^5+3^6
3A=3+3^2+3^3+3^4+3^5+3^6+3^7
3A-A=(3+3^2+3^3+3^4+3^5+3^6+3^7)-(1+3+3^2+3^3+3^4+3^5+3^6)
A=3^7-1
Vì A =3^7-1 ; B =3^7-1
=> A=B
Sửa đề:
\(A=1+3+3^2+3^3+3^4+3^5+3^6\)
\(3A=3+3^2+...+3^7\)
\(3A-A=\left(3+3^2+3^3+...+3^7\right)-\left(1+3+3^2+...+3^6\right)\)
\(2A=3^7-1\)
\(\Rightarrow A=\frac{3^7-1}{2}< 3^7-1=B\)
Vậy \(A< B\)
S = 1 + 2 + 22 + 23 +...+ 29
2S = 2 + 22 + 23+...+ 29 + 210
2S - S = 210 - 1
S = 210 - 1
P = 5.20 = 5 < 7 = 23 - 1 < 210 -1 = S
S > P
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}< 1\)