K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2023
  Lê Ngọc Phát @ldtv.cskh.phatln Livechat Agent 14:40

Ta có thể viết lại A và B dưới dạng:

 

A = 29!

 

B = (58!/29!) / 30

 

Ta sẽ chứng minh rằng A + B chia hết cho 59 bằng cách chứng minh rằng A ≡ -B (mod 59).

 

Đầu tiên, ta áp dụng định lý Wilson: (p-1)! ≡ -1 (mod p) nếu p là số nguyên tố. Áp dụng định lý này với p = 59, ta có:

 

58! ≡ -1 (mod 59)

 

Ta nhân cả hai vế của phương trình trên với 29!, ta được:

 

29!(58!) ≡ -29! (mod 59)

 

Nhưng ta biết rằng 29! ≡ A (mod 59) và (58!/29!) ≡ B (mod 59), do đó ta có:

 

A * B ≡ -A (mod 59)

 

Thêm A vào cả hai vế của phương trình, ta được:

 

A + A * B ≡ 0 (mod 59)

 

Nhưng ta biết rằng A + B = 29! + (58!/29!) / 30, do đó:

 

A + B ≡ A + A * B (mod 59)

 

Vậy ta kết luận được rằng A + B chia hết cho 59.

5 tháng 7 2016

A=3(3+1)+3^2(3+1)+.....+3^59(3+1)                                                                                                                                                  =4(3+3^2+.....+3^59) CHIA HẾT CHO 4

                 

5 tháng 7 2016

\(P=a^5b-ab^5=ab\left(a^4-b^4\right)=ab\left(a^2-b^2\right)\left(a^2+b^2\right)=ab\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)

  • Nếu a hoặc b chẵn => P chẵn; Nếu cả a;b lẻ thì a - b chẵn => P chẵn => P chia hết cho 2 với mọi a;b
  • Nếu a hoặc b chia hết cho 3 => P chia hết cho 3. Nếu cả a;b chia cho 3 cùng số dư thì a - b chia hết cho 3 => P chia hết cho 3. Nếu a;b chia 3 khác số dư, tức là dư là 1 và 2 thì tổng a+b chia hết cho 3. Do đó, P chia hết cho 3 với mọi a;b
  • Viết lại \(P=ab\left(a^4-b^4\right)=ab\left(a^4-1-\left(b^4-1\right)\right)\). Dùng hệ quả 1 của định lý Fermat nhỏ : với mọi số nguyên tố p thì Xp-1 - 1 chia hết cho p với mọi X nguyên. Ta cũng suy ra được a4 - 1 và b4 - 1 đều chia hết cho 5 nên P chia hết cho 5.

P chia hết cho 2; 3; 5 nên P chia hết cho 2*3*5 = 30. ĐPCM

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

\(\begin{array}{l}a)M = {32^{2023}} - {32^{2021}}\\M = {32^{2021}}\left( {{{32}^2} - 1} \right)\\M = {32^{2021}}.1023\end{array}\)

Vì \(1023 \vdots 31\) nên \(M = \left( {{{32}^{2021}}.1023} \right) \vdots 31\)

Vậy M chia hết cho 31.

\(\begin{array}{l}b)N = {7^6} + {2.7^3} + {8^{2022}} + 1\\N = {\left( {{7^3}} \right)^2} + {2.7^3} + 1 + {8^{2022}}\\N = {\left( {{7^3} + 1} \right)^2} + {8^{2022}}\\N = {\left( {344} \right)^2} + {8^{2022}}\\N = {\left( {8.43} \right)^2} + {8^{2022}}\\N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right)\end{array}\)

Vì \({8^2} \vdots 8\) suy ra \(N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right) \vdots 8\)

Vậy N chia hết cho 8

Vì số a có 31 chữ số 1 nên tổng các chữ số của số a là: 31.1=31 chia 3 dư 1

Vì số b có 32 chữ số 1 nên tổng các chữ số của số b là: 32.1=32 chia 3 dư 2

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3=>a chia 3 dư 1; b chia 3 dư 2.

=>ab chia 3 dư 2

=>ab-2 chia hết cho 3 (đpcm)

1 tháng 7 2021

a) Ta có : n3 + 3n2 + 2n

= n(n2 + 3n + 2) 

= n(n + 1)(n + 2) \(⋮\)6 (tích 3 số nguyên liên tiếp) (đpcm)

b) A = 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + .... + 295 + 296 + 297 + 298 + 299

= (1 + 2 + 22 + 23 + 24) + 25(1 + 2 + 22 + 23 + 24) + ... + 295(1 + 2 + 22 + 23 + 24)

= 31 + 25.31 + .. + 295.31

= 31(1 + 25 + ... + 295\(⋮31\)(đpcm) 

c) Ta có 49n + 77n - 29n - 1

= (49n - 1) + (77n - 29n

= (49 - 1)(49n - 1 - 49n - 2 + .... - 1) + (77 - 29)(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) 

= 48(49n - 1 - 49n - 2 + .... - 1) + 48(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) 

= 48(49n - 1 - 49n - 2 + .... - 1 + 77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) \(⋮\)48 (đpcm) 

8 tháng 10 2017

bài này làm thế nào 

hiền k hộ ta