Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\left|x\right|=2017\Rightarrow\hept{\begin{cases}x=-2017\\x=2017\end{cases}\Rightarrow}x=\pm2017\)
\(b)A=1+2^1+2^2+...+2^{2017}\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(2A-A=(2+2^2+2^3+...+2^{2018})-(1+2^2+2^3+...+2^{2017})\)
\(A=2^{2018}-1\)
...
Rồi còn khúc để bạn so sánh đó
Ta có :
\(2A=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2018}\right)-\left(1+2+2^2+...+2^{2017}\right)\)
\(\Rightarrow A=2^{2018}-1< 2^{2018}=B\)
Vậy A<B
cái này là khi chiều mới thi nầy
Giải:
Ta có:A=1.2+2.3+3.4+...+2017.2018
3A=1.2.3 2.3.3+...+2017.2018.3
=1.2.(3-0)+2.3.(4-1)+...+2017.2018.(2019-2016)
=1.2.3+2.3.4+...+2017.2018.2019-1.2.0-2.3.1-...-2017.2018.1016
=2017.2018.2019-1.2.0
=2017.2018.2019
=>A=2017.2018.2019/3=2018.(2017.2019)/3
Và B=20183/3=2018.2018.2018/3=2018.(2018.2018)/3
Lại có: 2017.2019=2017.(2018+1)=2017.2018+2017
2018.2018=(2017+1).2018=2017.2018+2018
Mà 2017.2018+2017<2017.2018+2018 =>2017.2019<2018.2018
=>2018.(2017.2019)<2018.(2018.2018)
=>A=2018.(2017.2019)/3<2018.(2018.2018)/3=B
=>A<B
Vậy A<B
Chúc Công Chúa Bloom học giỏi!!!
\(2022A=2022+2022^2+2022^3+2022^4+...+2022^{2018}\)
\(2021A=2022A-A=2022^{2018}-1\Rightarrow A=\dfrac{2022^{2018}-1}{2021}\)
\(\Rightarrow A< B\)
Ta có : \(A=1+2+2^2+...+2^{2017}\)(1)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2018}\)(2)
Lấy (2) trừ (1) ta có :
\(\Rightarrow A=2^{2018}-1\)
\(\Rightarrow A< B\). Vì \(B=2^{2018}\)
A = 1+2+22+23+.....+22017
2A = 2(1+2+22+23+.....+22017) = 2+22+23+24+.....+22018
2A - A = 2+22+23+24+.....+22018- (1+2+22+23+.....+22017)
=> A = 2+22+23+24+.....+22018-1-2-22-23-.....-22017
A =22018-1 < 22018
Vậy A < B
A=1*2+2*3+3*4+...+2017*2018
3A=1*2*3+2*3*(4-1)+...+2017*2018*(2019-2016)
3A=1*2*3+2*3*4-1*2*3+...+2017*2018*2019-2016*2017*2018
3A=2017*2018*2019
A=\(\frac{2017.2018.2019}{3}\)
mk chỉ biết tính a thôi
Ta có: A= 1+2+2^2+2^3+...+2^2018
2A = 2+2^2+2^3+2^4+...+2^2019
2A-A=A= 2^2019-1 = (2^2017.4) -1
Mà B=5.2^2017
=> (2^2017.4) -1 < 5.2^2017
=> A < B