Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{100.101}\)
\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(A>\dfrac{1}{2}-\dfrac{1}{101}=\dfrac{99}{202}\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< \dfrac{99}{100}\)
Ta có: : \(\dfrac{99}{202}< A< \dfrac{99}{100}\)
Vậy \(A\) không phải số tự nhiên
a ) Gọi 4 số tự nhiên liên tiếp là \(n;n+1;n+2;n+3\)
Ta có : \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n^4+6n^3+11n^2+6n+1=\left(x^2+3x+1\right)^2\) là số chính phương (đpcm)
b ) \(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)
\(\Rightarrow a+1\) thuộc Ư(3) = { -3; -1; 1; 3 }
=> a = { - 4; - 2; 0; 2 }
em hãy thay b2=ac vào biểu thức trên :
ta đổi được:
=a2+ac / ac+c2
=a *(a+c) / c *(a+c)
rút gon a+c ta được :a/c
tự kết luận nha
chúc em học tốt
Ta có : \(b=\frac{a+c}{2}\) \(\implies\) \(2b=a+c\)
\(\frac{2}{c}=\frac{1}{b}+\frac{1}{d}\)
\(\implies\) \(\frac{1}{2}.\frac{2}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)
\(\implies\) \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)
\(\iff\) \(\frac{1}{c}=\frac{b+d}{2db}\)
\(2db=c.\left(b+d\right)\)
\(\left(a+c\right)d=cd+cb\)
\(ad+cd=cd+cb\)
\(ad=cb\)
\(\frac{a}{c}=\frac{b}{d}\) là một tỉ lệ thức \(\left(đpcm\right)\)
Từ giả thiết ta suy ra ab=c2
Thay số vào ta có : \(\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(b+a\right)}=\frac{a}{b}\)
=> đcpcm
__cho_mình_nha_chúc_bạn_học _giỏi__
Bài 2:
\(\dfrac{x^2+y^2}{10}=\dfrac{x^2-2y^2}{7}\)
\(\Leftrightarrow7x^2+7y^2=10x^2-20y^2\)
\(\Leftrightarrow-3x^2=-27y^2\)
\(\Leftrightarrow x^2=9y^2\)
Theo đề, ta có: \(\left(x^2y^2\right)^2=81\)
\(\Leftrightarrow81y^8=81\)
=>y=1 hoặc y=-1
hay x=3 hoặc x=-3
\(2A=2+2^2+2^3+2^4+...+2^{2022}\)
\(A=2A-A=2^{2022}-1\)
=> A và B là 2 số TN liên tiếp