Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có dãy này gồm 10 số hạng
mà 11 lũy thừa mấy cũng chỉ có chữ số tận cùng 1
mà mười số nên
khi cộng lại ta có chữ số cuối cùng là 0
mà 0 chia hết cho 5
nên A chia hết cho 5
ta thấy 112009có cs tận cùng là 1
112008 ; 112007 ; ....;112000 cũng như vậy
\(\Rightarrow11^{2009}+11^{2008}+....+11^{2000}\)
\(\Rightarrow\overline{.....1}+\overline{....1}+......+\overline{........1}\)
mà dãy số trên có 10 số
\(\Rightarrow A=\overline{.......1}\times10\)
\(\Rightarrow A=\overline{.......10}⋮5\)
Vậy \(A⋮5\)
cái này t chỉ biết là dùng đồng dư thôi nhưng lớp 6 chắc chưa học
(...1)x luôn có tận cùng = 1
Gọi A = 112009 + 112008 + 112007 + 112006 + 112005 + 112004 + 112003 + 112002 + 112001 +112000
A = (112009 + 112008 + 112007 + 112006 + 112005 ) + (112004 + 112003 + 112002 + 112001 +112000 )
A = (...1 + ...1 + ...1 + ...1 + ...1 ) + (...1 + ...1 + ...1 + ...1 + ...1)
A = ...5 + ...5
A = ...0 \(⋮5\)
Vậy 112009 + 112008 + 112007 + 112006 + 112005 + 112004 + 112003 + 112002 + 112001 +112000 \(⋮5\)
NHỚ **** NHÁ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Dễ mà :
Ta phân tích : \(11^{2009}=11^{2008}.11=11^{2008}.\left(10+1\right)\)
\(11^{2008}.11+11^{2007}.11+...+11^{1999}.11\)
Dãy trên có 10 số nên \(\left(11^{2008}+11^{2007}+...+11^{1999}\right)\cdot10+\left(11^{2008}+11^{2007}+...11^{1999}\right)\)
Cũng tương tự như dãy trên bạn cũng phân tích thì sẽ được 2 dãy chia hết cho 10
Ta có : \(A=\frac{11^{2007}+1}{11^{2008}+1}=\frac{11\left[11^{2007}+1\right]}{11^{2008}+1}=\frac{11^{2008}+11}{11^{2008}+1}=\frac{11^{2008}+1+10}{11^{2008}+1}=1+\frac{10}{11^{2008}+1}\)
\(B=\frac{11^{2008}+1}{11^{2009}+1}=\frac{11\left[11^{2008}+1\right]}{11^{2009}+1}=\frac{11^{2009}+11}{11^{2009}+1}=\frac{11^{2009}+1+10}{11^{2009}+1}=1+\frac{10}{11^{2009}+1}\)
Đến đây bạn tự so sánh nhé
Ta có: B = 11^2008+1/11^2009+1 < 11^20087 +1 + 10/11^2009+1+10 = 11^2008+11/11^2009+11 = 11(11^2007 +1)/11(11^2008+1) = 11^2007 +1/11^2008+1 = A
=>B <A
Vậy A > B
Sửa lại:
Ta có: \(A=\frac{11^{2007}+1}{11^{2008}+1}\Rightarrow11A=\frac{11^{2008}+11}{11^{2008}+1}=1+\frac{10}{11^{2008}+1}\)
\(B=\frac{11^{2008}+1}{11^{2009}+1}\Rightarrow11B=\frac{11^{2009}+11}{11^{2009}+1}=1+\frac{10}{11^{2009}+1}\)
Vì \(\frac{10}{2^{2008}+1}>\frac{10}{11^{2009}+1}\Rightarrow1+\frac{10}{2^{2008}+1}>1+\frac{10}{11^{2009}+1}\)
\(\Rightarrow11A>11B\)
\(\Rightarrow A>B\)
Ta có: \(A=\frac{11^{2007}+1}{11^{2008}+1}\)
\(\Rightarrow11A=\frac{11^{2008}+11}{11^{2008}+1}=1+\frac{10}{11^{2008}+1}\)
\(B=\frac{11^{2008}+1}{11^{2009}+1}\)
\(\Rightarrow11B=\frac{11^{2009}+11}{11^{2009}+1}=1+\frac{10}{11^{2009}+1}\)
Vì \(\frac{10}{11^{2008}+1}< \frac{10}{11^{2009}+1}\Rightarrow1+\frac{10}{11^{2008}+1}< 1+\frac{10}{11^{2009}+1}\)
\(\Rightarrow11A< 11B\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
D = 112009 + 112008 + ... + 112000 ( Có 10 SH )
Thấy mỗi số hạng của D có dạng 11n ( n = 2000; 2001;..;2009 ) đều có chữ số tận cùng là 1
=> D có chữ số tận cùng là 0
=> D \(⋮\)5 ( đpcm )
\(D=11^{2009}+11^{2008}+11^{2007}+...+11^{2000}\)
Số số hạng là: (2009 - 2000) : 1 + 1 = 10 (số)
Mà ta thấy số nào tận cùng bằng 1 lũy thừa bao nhiêu cũng tận cùng bằng 1
\(\Rightarrow D=...1+...1+...1+...+...1\)
\(\Rightarrow D=...0\)
Mà số nào tận cùng bằng 0 thì chia hết cho 5
Vậy \(D⋮5\)(ĐPCM)
Ta có
A = 112009 + 112008 + 112007 +.....+112001 + 112000
A = ( 112009 + 112008 + 112007 + 112006 + 112005) + (112004 + 112003 + 112002 + 112001 + 112000)
A = 112005(114 + 113 + 112 + 111 + 1) + 112000(114 + 113 + 112 + 111 + 1)
A = 112005.16015 + 112000.16105
=> A \(⋮\) 5
=> đpcm
Tk nha
ta có :
A=112009 + 112008 + ... + 112001 + 112000 ( có 10 số hạng )
A=(112009 + 112008 + 112007 + 112006 + 112005) + (112004 + 112003 + 112002 + 112001 + 112000) (có 2 nhóm)
A= 112005(114+113+112+11+1)+ 112000(114+113+112+11+1)
A=112005.16105+112000.16105
\(\Rightarrow A⋮5\)
đpcm