Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2A = 2.1.3.5.....2011
Dễ thấy 2A chia hết cho 2 mà không chia hết cho 4
=> 2A không là bình phương của 1 số nguyên nào
VÌ 2A là chẵn => 2A - 1 lẻ, mà 2A- 1 ko chia hết cho 3, 5, 7,...,2011
( vì 2A chia hết cho các số đó)
Tương tự vậy ta thấy ngay 2A-1, 2A không là bình phương cảu bất kì số nguyên nào
Bài 1 nha !
Gọi số tự nhiên lẻ cần tìm có dạng \(\overline{xy}\) (\(\overline{xy}\) >0)
\(\overline{xy}=10x+y\)
Mà \(\overline{xy}⋮5\)
Nên \(\left(10x+y\right)⋮5\)
Do 10x chia hết cho 5
=> để số đó chia hết cho 5 thì y chia hết cho 5
\(\Rightarrow y\in B\left(5\right)\)
\(\Rightarrow y\in\left\{0,5,15,...\right\}\)
Vì y là 1 số và \(\overline{xy}\) lẻ
Nên y = 5
Ta có:
\(\overline{xy}-x=68\)
\(10x+y-x=68\)
\(9x+5=68\)
\(9x=63\Leftrightarrow x=7\)
Vậy số cần tìm là 75
Bài 3:
Nửa chu vi là: 320:2 = 160 (m)
Gọi chiều dài là x (m)
=> Chiều rộng là: 160 - x
Theo đề ra ta có pt:
\(\left(x+10\right)\left(180-x\right)-2700=x\left(160-x\right)\)
\(\Leftrightarrow180x-x^2+1800-10x-2700=160x-x^2\)
\(\Leftrightarrow170x-900-x^2=160x-x^2\)
\(\Leftrightarrow10x-900=0\)
\(\Leftrightarrow x=90\)
Vậy chiều dài là 90 (m)
Chiều rộng là: 160 - 90 = 70 (m)
ọi k là một số nguyên, theo đề ta có:
a=3k+1
b=3k+2
ab=(3k+1)(3k+2)=9k^2+9k+2
vì 9k^2 và 9k chia hết cho 3
nên ab chia 3 dư 2
- Vì a chia cho 3 dư 1 nên a = 3m + 1 ( m \(\in\)N )
- Vì b chia cho 3 dư 2 nên b = 3n + 2 ( n\(\in\)N )
Ta có :
a . b = ( 3m + 1 ) ( 3n + 2 )
= 3m . 3n + 3m . 2 + 1 . 3n + 1 . 2
= ( 9 mn + 6m + 3n ) + 2
= 3 ( 3mn + 2m + n ) + 2 ....
Vậy ab chia cho 3 dư 2 .
Ta có:
\(a=11...1=\frac{10^{2008}-1}{9}\)
\(b=100...05=10...0+5=10^{2008}+5\)
\(\Rightarrow ab+1=\frac{\left(10^{2008}-1\right)\left(10^{2008}+5\right)}{9}+1\)
\(=\frac{\left(10^{2008}\right)^2+4.10^{2008}-5+9}{9}\)
\(=\left(\frac{10^{2008}+2}{3}\right)^2\)
\(\Rightarrow\sqrt{ab+1}=\sqrt{\left(\frac{10^{2008}+2}{3}\right)^2}=\frac{10^{2008}+2}{3}\)
Ta thấy:
\(10^{2008}+2=10...02⋮3\Rightarrow\frac{10^{2008}+2}{3}\in N\)
Hay \(\sqrt{ab+1}\) là số tự nhiên (Đpcm)