K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

Áp dụng a/b > 1 => a/b > a+m/b+m (a;b;m thuộc N*)

Ta có:

\(A=\frac{100^{1000}}{100^{900}}>\frac{100^{1000}+1}{100^{900}+1}=B\)

=> A > B

22 tháng 7 2016

Áp dụng a/b > 1 => a/b > a+m/b+m (a;b;m thuộc N*)

Ta có: \(A=\frac{100^{1000}}{100^{900}}>\frac{100^{1000}+1}{100^{900}+1}=B\)

= > A > B

Giải:

A=102004+1/102005+1

10A=102005+10/102005+1

10A=102005+1+9/102005+1

10A=1+9/102005+1

Tương tự:

B=102005+1/102006+1

10B=1+9/102006+1

Vì 9/102005+1>9/102006+1 nên 10A>10B

⇒A>B

Chúc bạn học tốt!

7 tháng 5 2021

thank

31 tháng 1 2016

=>x(x+1)=1000.1001

Mà x<x+1 là 1 đơn vị

1000<1001 1 đơn vị

=>x=1000

31 tháng 1 2016

phân tích 1001000 ra thừa số nguyên tố rồi nhóm sao cho ổn

31 tháng 1 2016

phân tích 1001000 ra thừa số nguyên tố rồi nhóm sao cho ổn

31 tháng 1 2016

Vì x và x+1 là hai số tự nhiên liên tiếp

Mà x = 1000 => x+1 = 1001

=> x(x+1) = 1000.1001 = 1001000

Trên đây là lời giải thích của tớ

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?

11 tháng 3 2016

=935 nhe bé

8 tháng 7 2023

A = \(\dfrac{n^9+1}{n^{10}+1}\) 

\(\dfrac{1}{A}\) = \(\dfrac{n^{10}+1}{n^9+1}\) = n -  \(\dfrac{n-1}{n^9+1}\)

B = \(\dfrac{n^8+1}{n^9+1}\)

\(\dfrac{1}{B}\) = \(\dfrac{n^9+1}{n^8+1}\) =  n - \(\dfrac{n-1}{n^8+1}\)

Vì n > 1 ⇒ n - 1> 0

       \(\dfrac{n-1}{n^9+1}\) < \(\dfrac{n-1}{n^8+1}\)

⇒ n - \(\dfrac{n-1}{n^9+1}\) > n - \(\dfrac{n-1}{n^8+1}\)⇒ \(\dfrac{1}{A}>\dfrac{1}{B}\)

⇒ A < B 

 

    

9 tháng 4 2017

a) Với a>b thì => (a+n).b=ab+bn>ab+an=a(b+n)=>(a+n).b>a.(b+n)

=> \(\frac{a+n}{b+n}>\frac{a}{b}\)

Với b>a thì chứng minh tương tự ta được \(\frac{a+n}{b+n}< \frac{a}{b}\)

Với a=b thì chứng minh tương tự ta được \(\frac{a+n}{b+n}=\frac{a}{b}\)

9 tháng 4 2017

cho \(A=\frac{10^{11}-1}{10^{12}-1}\) và \(B=\frac{10^{10}+1}{10^{11}+1}\)

          giải

Ta có 

\(A=\frac{10^{11}-1}{10^{12}-1}\)

\(\Rightarrow10.A=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)

\(B=\frac{10^{10}+1}{10^{11}+1}\)

\(\Rightarrow10.B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)

VÌ 10.B > 1  và 10.A < 1 

=>  10.B > 10.A 

=> B > A

vậy A < B