K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

Đề sai rồi. Chỉ cần  \(3\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}\right)=\frac{49}{12}>4\) thì cần gì tới 4 số phải bằng nhau nữa.

30 tháng 6 2017

xin đính chính lại là VT > 5. Bạn giúp mình bài này với

5 tháng 11 2017

   

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

NV
4 tháng 3 2019

\(2a=1-\sqrt{2}\Rightarrow\sqrt{2}=1-2a\Rightarrow2=4a^2-4a+1\Rightarrow a^2-a=\dfrac{1}{4}\)

\(16a^8=16a^6\left(a^2-a\right)+16a^7=16a^7+4a^6=16a^5\left(a^2-a\right)+20a^6=20a^6+4a^5\)

\(=20a^4\left(a^2-a\right)+24a^5=24a^5+5a^4=24a^3\left(a^2-a\right)+29a^4\)

\(=29a^4+6a^3=29a^2\left(a^2-a\right)+35a^3=35a^3+\dfrac{29}{4}a^2\)

\(=35a\left(a^2-a\right)+\dfrac{169}{4}a^2=\dfrac{169}{4}a^2+\dfrac{35}{4}a=\dfrac{169}{4}\left(a^2-a\right)+51a=\dfrac{169}{16}+51a\)

\(\Rightarrow A=\sqrt{\dfrac{169}{16}+51a-51a}=\dfrac{13}{4}\)

NV
4 tháng 3 2019

2/

Với \(a\in Z^+\) , ta có:

\(\dfrac{1}{\sqrt{a}}=\dfrac{2}{2\sqrt{a}}< \dfrac{2}{\sqrt{a-1}+\sqrt{a}}=2\left(\sqrt{a}-\sqrt{a-1}\right)\)

\(\Rightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(\Rightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 2\left(\sqrt{100}-\sqrt{1}\right)=18\)

\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 19\)

Áp dụng vào bài toán, ta có:

\(\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{100}}}=19\left(1\right)\)

Giả sử tất cả các số tự nhiên \(a_k\left(k=1...100\right)\) đều khác nhau và \(a_k\ne0\), không làm mất tính tổng quát, giả sử \(1\le a_1< a_2< a_3< ...< a_{100}\)

\(\Rightarrow\left\{{}\begin{matrix}a_1\ge1\\a_2\ge2\\...\\a_{100}\ge100\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{a_1}}\le\dfrac{1}{\sqrt{1}}\\\dfrac{1}{\sqrt{a_2}}\le\dfrac{1}{\sqrt{2}}\\...\\\dfrac{1}{\sqrt{a_{100}}}\le\dfrac{1}{\sqrt{100}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{100}}}\le\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 19\)

\(\Rightarrow\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{100}}}< 19\)

Mâu thuẫn với \(\left(1\right)\Rightarrow\) điều giả sử là sai.

Vậy phải tồn tại ít nhất 2 số bằng nhau

21 tháng 7 2016

Ta có

\(\frac{1^2+2^2+...+n^2}{n}=\frac{n\left(n+1\right)\left(2n+1\right)}{6n}=\frac{\left(n+1\right)\left(2n+1\right)}{5n}=\frac{2n^2+1+3n}{5n}\)

19 tháng 7 2016

k vao se co cau tra loi

19 tháng 7 2016

kick vao se co cau tra loi