K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

-1 bạn nhé, 2 số nguyên khác nhau mà 

3 tháng 1 2016

nhầm

nếu a là số nguyên tố(snt) mà a chia hết cho b mà b thuộc snt thì a là hợp số

ko tồn tại a và b

mình nghĩ là vậy

20 tháng 12 2021

TL:

a= 3

b=9

Học Tốt

25 tháng 1 2016

-1 (MIK LẤY TẤT CẢ SỐ TICK MIK ĐANG CÓ ĐỂ THẾ)

                             (SAI THÌ MIK MẤT HẾT)

                                                                                                                                                         KÍ TÊN

                                                                                                                                                   TẠ UYỂN NHI

25 tháng 1 2016

Nhi ơi bạn có thể giảu ra không :)

21 tháng 2 2021

Ta có :

       a ⋮ b ; b ⋮ a

⇒a = b

Mà theo đề bài a ≠ b ⇒ Không có a và b

VD : 4 ⋮ 2 nhưng 2 khong chia hết cho 4

Ta có : a ⋮b => a= bk1 ( k1 thuộc N ; b khác 0); b ⋮ a => b=ak2 ( k2 thuộc N , a khác 0 )
=> a= ak1k2 => a= a( k1k2 ) .
=> 1=1( k1k2) => k1.k2 =1 =1.1= (-1) (-1)
=> k1=k2=1 hoặc k1=k2=-1 + Nếu k1=k2 =1 thì : a=b.1 =b b=a.1 =a
=> loại vì a và b là 2 số khác nhau + Nếu k1=k2 = -1 thì : a=b.-1=-b b=a.-1=-a
=> Nhận vì a và b là 2 số đối nhau
Kết luận : 2 số đối nhau a;b sẽ chia hết cho nhau
CHÚC BẠN HỌC TỐT

10 tháng 2 2020

YẾN NHI CẢM ƠN BẠN RẤT NHIỀU !

23 tháng 2 2021

có,

VD:-2 chia hết cho 2;-1 chia hết cho 1;...

k mik zới

23 tháng 2 2021

à thế à

22 tháng 2 2017

Ta có a^2 luôn chia 3 dư 1 hoặc 0 b^2 luôn chia 3 dư 1

=> a^2 + b^2 chia 3 dư 2 hoặc 0 mà theo đề bài a^2 + b^2 chia hết cho 3 nên a^2 chia hết cho 3 và b^2 chia hết cho 3 

=> a,b đều chia hết cho 3

22 tháng 2 2017

Vì số chính phương chia 3 dư 1 hoặc 0

Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là

(0;0) (0;1) (1;0) (1;1)

Vì a2+b2chia hết 3 nên ta nhận cặp (0;0) => a,b đều chia hết 3

k mình nhé

11 tháng 3 2021

Số chính phương khi chia 3 chỉ dư 0 hoặc 1.

Trường hợp 1: 

\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)

Trường hợp 2: 

\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)

Trường hợp 3: 

\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )

Vậy có đpcm.

 

 

Giải:

Giả sử a không ⋮ 3 ➩ b không ⋮ 3

\(a^2 - 1 + b^2-1\) ⋮ 3

Mà \(a^2 +b^2\)2⋮ 3 (không có thể)

Vậy a và b ⋮ 3.