Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=n^4-10n^2+9\)
\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)
Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3
\(\Rightarrow A⋮3\)
Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Do n lẻ, đặt \(n=2k+1\)
\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8
\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)
Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)
Lời giải:
Theo công thức hằng đẳng thức thì:
$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+....+ab^{n-2}+b^{n-1})\vdots a-b$ (đpcm)
Với $n$ lẻ:
$a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+....-ab^{n-2}+b^{n-1})\vdots a+b$ (đpcm)
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
bt trên sẽ là (a4n)2 + 3 . a4n - 4 = (a4n)2 + 4. a4n - a4n -4 = ( a4n + 4)(a4n -1)
mặt khác vì a là số tự nhiên , a không chia hết cho 5
=> a4n = (a2n)2 là số chính phương chia 5 dư 1 hoặc 4 (vì scp chia 5 dư 0,1,4 - bạn có thể chứng minh = cách xét 1 số x nào đó có số dư cho 5 là 0,1,2,3,4 , đăt dạng của nó (VD như 5k+1 chẳng hạn ) rồi bp lên đc scp của nó để tìm số dư của scp đó cho 5 theo cách tổng quát nhất)
nếu a4n chia 5 dư 1 => a4n -1 chia hết cho 5 => bt chia hết cho 5
nếu a4n chia 5 dư 4 => a4n -4 chia hết cho 5 => bt chia hết cho 5
Vậy bt trên chia hết cho 5
Đề sai rồi nhé. 82n-1 thì nếu n = 0 thì A là số thập phân sao chia hết cho 59 được. M sửa đề luôn nhé.
\(A=5^{n+2}+26.5^n+8^{2n+1}\)
\(=25.5^n+26.5^n+8.64^n\)
\(=5^n\left(25+26\right)+8.64^n\)
\(=5^n\left(59-8\right)+8.64^n\)
\(=59.5^n+8\left(64^n-5^n\right)\)
\(=59.5^n+8.\left(64-5\right)\left(64^{n-1}+64^{n-2}.5...\right)\)
\(=59.5^n+8.59.\left(64^{n-1}+64^{n-2}.5...\right)\)
Vậy A chia hết cho 59 với mọi n tự nhiên
Đề sai rồi nhé. 82n-1 thì nếu n = 0 thì A là số thập phân sao chia hết cho 59 được. M sửa đề luôn nhé.
\(A=5^{n+2}+26.5^n+8^{2n+1}\)
\(=25.5^n+26.5^n+8.64^n\)
\(=5^n\left(25+26\right)+8.64^n\)
\(=5^n\left(59-8\right)+8.64^n\)
\(=59.5^n+8\left(64^n-5^n\right)\)
\(=59.5^n+8.\left(64-5\right)\left(64^{n-1}+64^{n-2}.5...\right)\)
\(=59.5^n+8.59.\left(64^{n-1}+64^{n-2}.5...\right)\)
Vậy A chia hết cho 59 với mọi n tự nhiên
Vì n là số lẽ nên ta có : \(n=2k+1\left(k\in N\right)\). Thay vào :
\(\left(2k+1\right)^2-1=4k^2+4k+1-1=4k^2+4k=4k\left(k+1\right)\)
4 chia hết cho 4 ; \(k\left(k+1\right)\)là 2 số tự nhiên liên tiếp nên chia hết cho 2 \(\Rightarrow\left(2k+1\right)^2-1\) chia hết cho 8 (vì 4.2=8).
Vậy với mọi số tự nhiên n, nếu n là số lẽ thì \(n^2-1\) chia hết cho 8.
https://vn.answers.yahoo.com/question/index?qid=20111127061818AAhrlFU
vào đây xem nhé