Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
Bài 1
Vì 6x+11y chia hết cho 31
=> 6x+11y+31y chia hết cho 31 (31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 nên x+7y chia hết cho 31 (đpcm)
Bài 3
n 2 + 3n - 13 chia hết cho n + 3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 thuộc Ư(13)={-1;1;-13;13}
=>n thuộc{-4;-2;-16;10}
n 2 + 3 chia hết cho n - 1
ta có: n-1 chia hết cho n-1
=>(n-1)(n+1) chia hết cho n-1
=>n^2+n-n-1 chia hết cho n-1
=>n^2-1 chia hết cho n-1 mà n2 + 3 chia hết cho n - 1
=>(n^2+3)-(n^2-1) chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 thuộc Ư(4)={-1;1;-2;2;-4;4}
=> n thuộc {0;2;-1;3;-3
a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4
Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4
= (a+a+a+a+a) + (1+2+3+4)
= 5a + 10
= 5(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên chia hết cho 5
a) \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
vì n, n-1, n+1 là 3 số nguyên liên tiếp nên có 1 số chia hết cho 3
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮3\\ \Rightarrow\left(n^3-n\right)⋮3\)
b) \(n^5-n=n\left(n^4-1\right)\\ =n\left(n^2-1\right)\left(n^2+1\right)\\ =\left(n-1\right)n\left(n+1\right)\left(n^2-4+5\right)=\left(n-1\right)n\left(n+1\right)\left(n^2-4\right)+5\left(n-1\right)n\left(n+1\right)\\ =\left(n-1\right)n\left(n+1\right)\left(n-2\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
Vì n-2, n-1, n, n+1, n+2 là 5 số nguyên liên tiếp nên có 1 số chia hết cho 5 ⇒ (n-2)(n-1)n(n+1)(n+2)⋮5
5⋮5⇒5(n-1)n(n+1)⋮5
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow n^5-n⋮5\)