Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk giải 1 bài lm mẩu nha .
+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)
vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)
vậy giá trị nhỏ nhất của \(A\) là \(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)
mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :
lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :
DƯƠNG PHAN KHÁNH DƯƠNG
Áp dụng BĐT Cauchy : \(\frac{\sqrt{\left(a-1\right).1}}{a}+\frac{\sqrt{\left(b-2\right).2}}{\sqrt{2}b}\le\frac{a-1+1}{2a}+\frac{b-2+2}{2\sqrt{2}b}=\frac{1}{2}+\frac{1}{2\sqrt{2}}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}a-1=1\\b-2=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a=2\\b=4\end{cases}}\)
Vậy max A = \(\frac{1}{2}+\frac{1}{2\sqrt{2}}\Leftrightarrow\left(a;b\right)=\left(2;4\right)\)
\(\sqrt{a^2+\dfrac{1}{b+c}}=\dfrac{2}{\sqrt{17}}\sqrt{\left(4+\dfrac{1}{4}\right)\left(a^2+\dfrac{1}{b+c}\right)}\ge\dfrac{2}{\sqrt{17}}\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)
Mặt khác:
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{6\left(a+b+c\right)}}\right)\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}\left(a+b+c\right)+\dfrac{a+b+c}{8}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}\right)\)
\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}.6+3\sqrt[3]{\dfrac{81\left(a+b+c\right)}{32.6.\left(a+b+c\right)}}\right)=\dfrac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\ge0\)
<=>\(a+b\ge2\sqrt{ab}\)
Dấu ''='' xảy ra <=>\(\sqrt{a}-\sqrt{b}=0<=>\sqrt{a}=\sqrt{b}<=>a=b\)
Tick cho tui nha,bạn hiền
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
Đề bài khó hiểu quá. Bạn cần viết lại đề để được hỗ trợ tốt hơn.
Để \(P\ge1\) thì \(P-1\ge0\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-1-\sqrt{x}+1}{\sqrt{x}-1}\ge0\)
\(\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-1}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x>1\end{matrix}\right.\)
Kết hợp ĐKXĐ, ta được: x=0 hoặc x>1
\(S=\frac{\sqrt{a-2}}{a}+\frac{\sqrt{b-6}}{b}+\frac{\sqrt{c-12}}{c}=\frac{\sqrt{2\left(a-2\right)}}{\sqrt{2}a}+\frac{\sqrt{6\left(b-6\right)}}{\sqrt{6}b}+\frac{\sqrt{12\left(c-12\right)}}{\sqrt{12}c}\)
\(\le\frac{\frac{2+a-2}{2}}{\sqrt{2}a}+\frac{\frac{6+b-6}{2}}{\sqrt{6}b}+\frac{\frac{12+c-12}{2}}{\sqrt{12}c}=\frac{a}{2\sqrt{2}a}+\frac{b}{2\sqrt{6}b}+\frac{c}{2\sqrt{12c}}\)(AM-GM)
\(=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{6}}+\frac{1}{2\sqrt{12}}\)
Dấu "=" xảy ra \(\Leftrightarrow a=4;b=12;c=24\)