K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)

Ta có: \(A=\frac{20^{102}+1}{20^{101}+1}< \frac{20^{102}+1+19}{20^{101}+1+19}=\frac{20.\left(20^{101}+1\right)}{20.\left(20^{100}+1\right)}=\frac{20^{101}+1}{20^{100}+1}\)

\(\Rightarrow A< B\)

\(20A=\dfrac{20^{101}-1-19}{20^{101}-1}=1-\dfrac{19}{20^{101}-1}\)

\(20B=\dfrac{20^{102}-1-19}{20^{102}-1}=1-\dfrac{19}{20^{102}-1}\)

mà \(\dfrac{-19}{20^{101}-1}< \dfrac{-19}{20^{102}-1}\)

nên A<B

21 tháng 8 2016

\(\frac{20^{101}-1}{20^{102}-1}>\frac{20^{101}-20}{20^{102}-20}=\frac{20.\left(20^{100}-1\right)}{20.\left(20^{101}-1\right)}=\frac{20^{100}-1}{20^{101}-1}\)

\(\Rightarrow\frac{20^{101}-1}{20^{102}-1}>\frac{20^{100}-1}{20^{101}-1}\)

21 tháng 8 2016

tui biết làm nhưng ko mún làm

4 tháng 11 2015

$\frac{10^{101-1}}{10^{102-1}}$  và  $\frac{10^{100+1}}{10^{101+1}}$
= $\frac{10^{100}}{10^{101}}$ và $\frac{10^{101}}{10^{102}}$
Mà $\frac{10^{100}}{10^{101}}$ <  $\frac{10^{101}}{10^{102}}$
=> $\frac{10^{101-1}}{10^{102-1}}$  < $\frac{10^{100+1}}{10^{101+1}}$

4 tháng 11 2015

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

6 tháng 5 2019

B= \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\)\(\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)

B= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)\(\frac{1}{20}\)

vậy B= \(\frac{1}{20}\)

6 tháng 5 2019

b,A=(1/101+1/102+...+1/150)+(1/151+1/152+...1/200)>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8=107/201+1/8>1/2+2/8=5/8

Vậy A>5/8

Nhớ k mik nha!!!!!!!!!!!!!

20 tháng 2 2018

xy - x + 2y = 3

=> x(y-1) + 2y - 2 = 3 + 2

=> x(y-1) + 2(y-1) = 5

=> (x+2)(y+1) = 5

=> x + 2 và y + 1 \(\in\)Ư(5) = {-1;5;-5;1}

ta có bảng :

x+2-1-515
y+1-5-151
x-3-7-13
y-6-240
22 tháng 4 2016

ta có:\(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

vì 2010-1>2010-3

=>\(\frac{2}{20^{10}-1}<\frac{2}{20^{10}-3}\)

\(\Rightarrow1+\frac{2}{20^{10}-1}<1+\frac{2}{20^{10}-3}\)

=>A<B

22 tháng 4 2016

Theo đề, ta có:

           \(B=\frac{20^{10}-1}{20^{10}-3}<\frac{20^{10}-1+2}{20^{10}-3+2}\)

Suy ra  \(B<\frac{20^{10}+1}{20^{10}-1}\)

Mà \(A=\frac{20^{10}+1}{20^{10}-1}\)

Nên ​​​B < A