Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}\times\frac{3}{4}......\frac{9999}{10000}\)
Đặt : \(B=\frac{2}{3}\times\frac{4}{5}\times\frac{6}{7}.......\frac{10000}{10001}\)
Vì \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};.....\frac{9999}{10000}< \frac{10000}{10001}\)
Nên A<B mà A>0; B>0
\(\Rightarrow A^2< A\times B=\left(\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}.....\frac{9999}{10000}\right)\times\left(\frac{2}{3}\times\frac{4}{5}\times\frac{6}{7}......\frac{10000}{10001}\right)\)\(=\frac{1}{2}\times\frac{2}{3}\times\frac{4}{5}......\frac{9999}{10000}\times\frac{10000}{10001}\)\(=\frac{1}{10001}< \frac{1}{10000}=\frac{1}{100^2}=0.01^2\)\(\Rightarrow A^2< 0.01^2\)hay A < 0.01
Ta có : \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{10000-1}{10000}\)
\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\left(99\text{ số hạng 1}\right)\)
\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)
\(=99-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)=99-\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=99-\frac{99}{202}>99-\frac{1}{2}=98,5\)
=> A > 98,5
=> A > 98
lớn hơn vì ta có thể thấy: các số như 1/2,3/4,5/6 đã lớn hơn 0,01
khi ta X len ta se duoc ket qua > 0,01
duyet minh nha
Ta có: \(0,01=\frac{1}{100}\)
Mà \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)
Ta thấy: \(\frac{1}{100}=\frac{100}{10000}\)
Vì \(\frac{9999}{10000}>\frac{100}{10000}hay\frac{9999}{10000}>\frac{1}{100}\)
Nên \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}>\frac{1}{100}hay\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}>0,01\)
Vậy \(A>0,01\)
Ta có: \(0,01=\frac{1}{100}\)
Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{10000}{10001}\)
Xét \(AB=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{9999}{10000}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{10000}{10001}\)
\(\Leftrightarrow\)\(AB=\frac{1.2.3.4.5.6.....9999.10000}{2.3.4.5.6.7.....10000.10001}\)
\(\Leftrightarrow\)\(AB=\frac{1}{10001}\)
Vì A < B
\(\Rightarrow\)A2 < AB
\(\Rightarrow A^2< \frac{1}{10001}< \frac{1}{10000}\)
\(\Rightarrow A< \frac{1}{100}hayA< 0,01\)
Vậy A < 0,01